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Abstract 
The paper presents several improvements to state-of-the-art in 
FPGA technology mapping exemplified by a recent advanced 
technology mapper DAOmap [Chen and Cong, ICCAD `04]. 
Improved cut enumeration computes all K-feasible cuts without 
pruning for up to 7 inputs for the largest MCNC benchmarks. A 
new technique for on-the-fly cut dropping reduces by orders of 
magnitude memory needed to represent cuts for large designs. 
Improved area recovery leads to mappings with area on average 
7% smaller than DAOmap, while preserving delay optimality 
when starting from the same optimized netlists. Applying mapping 
with structural choices derived by a synthesis flow on average 
reduces delay by 7% and area by 14%, compared to DAOmap.   

Categories and Subject Descriptors  
B.6.3 [Logic Design]: Design Aids—Optimization; B.7.1 
[Integrated Circuits]: Types and Design Styles—Gate arrays; 
J.6 [Computer-Aided Engineering]: Computer-aided design 
(CAD) 

General Terms 
Algorithms 

Keywords 
FPGA, Technology Mapping, Cut Enumeration, Area Recovery, 
Lossless Synthesis 

1 Introduction 
Field Programmable Gate Arrays (FPGAs) are an attractive 

hardware design option, making technology mapping for FPGAs 
an important EDA problem. For an excellent overview of the 
classical and recent work on FPGA technology mapping, focusing 
on area, delay, and power minimization, the reader is referred to 
[2]. 

The recent advanced algorithms for FPGA mapping, such as 
[2][12][16][23], focus on area minimization under delay 
constraints. If delay constraints are not given, first the optimum 
delay for the given logic structure is found and then area is 
minimized without changing delay.  

In terms of the algorithms employed, the mappers are divided 
into structural and functional. Structural mappers consider the 
circuit graph as a given and find a covering of the graph with K-
input subgraphs corresponding to LUTs. The functional 
approaches perform Boolean decomposition of the logic functions 
of the nodes into sub-functions of limited support size realizable 
by individual LUTs. 

Since functional mappers explore a larger solution space, they 
tend to be time-consuming, which limits their use to small 
designs. In practice, FPGA mapping for large designs is done 
using structural mappers, whereas the functional mappers are used 
for resynthesis after technology mapping. 

In this paper, we consider the recent work on DAOmap [2] as 
representative of the advanced structural technology mapping for 
LUT-based FPGAs and refer to it as “the previous work” and 
discuss several ways of improving it. Specifically, our 
contributions fall into three categories: 

(1) Improved cut computation  

Computation of all K-feasible cuts is typically a run-time and 
memory bottleneck of a structural mapper. We propose several 
enhancements to the standard cut enumeration procedure [7][22]. 
Specifically, we introduce cut filtering with signatures and show 
that it leads to a speed-up. This makes exhaustive cut enumeration 
for 6 and 7 inputs practical for many test-cases.  

Since the number of K-feasible cuts per node, for large K, can 
exceed 100, storing all the computed cuts in memory is 
problematic for large benchmarks. We address this difficulty by 
allowing cut enumeration to “drop” the cuts at the nodes whose 
fanouts have already been processed. This allows the mapper to 
store only a small fraction of all K-feasible cuts at any time, 
thereby reducing memory usage for large benchmarks by an order 
of magnitude or more. 

(2) Better, simpler, and faster area recovery 

Area optimization after delay-optimum structural mapping 
proceeds in several passes over the network. Each pass assigns 
cuts with a better area among the ones that do not violate the 
required time. The previous work relied on several sophisticated 
heuristics for ranking the cuts, trying to estimate their potential to 
save area. The previous work concluded that not all the heuristics 
are equally useful but, to get good area, a number of them need to 
be applied. 

In this paper, we show that the combination of two simple 
techniques is enough to ensure reasonable mapping quality and 
improve on the results of the previous work by 7% on average. 
The proposed combination of techniques works well since the first 
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one attempts heuristically to find a global optimum, whereas, the 
second ensures that at least a local optimum is reached.  

It should be noted that the first heuristic (known as effective 
area [7] or area flow [16]) is used in the previous work but it is 
applied in a reverse topological order, while we argue below that 
a direct topological order works better. 

(3) Lossless synthesis 
The main drawback of the structural approaches to technology 

mapping is their dependence on the initial circuit structure. If the 
structure is bad, neither heuristics nor iterative recovery will 
improve the results of mapping. 

To obtain a good structure for the network several technology 
independent synthesis steps are usually performed. An example of 
this is script.rugged in SIS followed by a two-input gate 
decomposition. Each synthesis step in the script is heuristic, and 
the subject graph produced at the end is not necessarily optimum. 
Indeed, it is possible that the initial or an intermediate network is 
better in some respects than the final network.  

In this paper, we explore the idea of combining these 
intermediate networks into a single subject graph with choices and 
using that to derive the mapped netlist. The mapper is not 
constrained to use any one network, but can pick and choose the 
best parts of each. We call this approach lossless synthesis, since 
no network seen during the synthesis process is ever lost. By 
including the initial network in the choice network, we can be 
sure that the heuristic logic synthesis operations never make 
things worse. We can also use multiple scripts and repeatedly go 
through each accumulating more choices. We defer discussion of 
related work to Section 5.3. 

 
The rest of the paper is organized as follows. Section 2 

describes the background. Sections 3-5 give details on the three 
contributions of the paper listed above. Section 6 shows 
experimental results. Section 7 concludes the paper and outlines 
future work. 

 

2 Background 
A Boolean network is a directed acyclic graph (DAG) with 

nodes corresponding to logic gates and directed edges 
corresponding to wires connecting the gates. The terms network, 
Boolean network, and circuit are used interchangeably in this 
paper. 

A node has zero or more fanins, i.e. nodes that are driving this 
node, and zero or more fanouts, i.e. nodes driven by this node. 
The primary inputs (PIs) of the network are nodes without fanins 
in the current network. The primary outputs (POs) are a subset of 
nodes of the network. If the network is sequential, the flip-flop 
outputs/inputs are treated as additional PIs/POs. In the following, 
it is assumed that each node has a unique integer number called 
the node ID. 

A network is K-bounded if the number of fanins of each node 
does not exceed K. An subject graph is a K-bounded network 
used for technology mapping. Any combinational network can be 
represented as an AND-INV graph (AIG), composed of two-input 
ANDs and inverters. Without limiting the generality, in this paper 
we assume subject graphs to be AIGs. 

A cut C of node n is a set of nodes of the network, called leaves, 
such that each path from a PI to n passes through at least one leaf. 
A trivial cut of the node is the cut composed of the node itself. A 
cut is K-feasible if the number of nodes in it does not exceed K. A 

cut is said to be dominated it there is another cut of the same 
node, which is contained, set-theoretically, in the given cut. 

A fanin (fanout) cone of node n is a subset of all nodes of the 
network reachable through the fanin (fanout) edges from the given 
node. A maximum fanout free cone (MFFC) of node n is a subset 
of the fanin cone, such that every path from a node in the subset 
to the POs passes through n. Informally, the MFFC of a node 
contains all the logic used only by the node. When a node is 
removed or substituted, the logic in its MFFC can also be 
removed. 

The level of a node is the length of the longest path from any PI 
to the node. The node itself is counted towards the path lengths 
but the PIs are not. The network depth is the largest level of an 
internal node in the network. The delay and area of FPGA 
mapping is measured by the depth of the resulting LUT network 
and the number of LUTs in it.  

A typical procedure for structural technology mapping performs 
the following steps: 

1. Cut computation. 
2. Delay-optimum mapping. 
3. Area recovery using heuristics. 
4. Writing out the resulting LUT network. 
For a detailed description on these steps, we refer the reader to 

[2] and [16]. 
 

3 Improved cut computation 
Structural technology mapping into FPGAs containing K-input 

LUTs starts by computing K-feasible cuts for each internal two-
input node of the subject graph.  

Of the two procedures for cut computation, the network flow [5] 
and the cut enumeration [7][22], the latter is faster. The advantage 
of the former is that it can be applied incrementally to compute 
cuts for individual nodes. However, at the beginning of mapping, 
computing cuts for all nodes is desirable. 

3.1 Cut enumeration 
The result of cut enumeration is a set of all K-feasible cuts 

assigned for each node. Cut enumeration starts at the PIs and 
proceeds in the topological order to the POs. Processing nodes in 
the topological order guarantees that cut computation is called for 
an internal node after it has completed for its fanins. For a PI, the 
set of cuts contains only the trivial cut. For an internal node n 
with two fanins, a and b, the set of cuts Φ(n) is computed by 
merging the sets of cuts of a and b as follows: 

Φ(n) ={{n}} ∪ {u ∪ v | u ∈ Φ(a), u ∈ Φ(b), |u ∪ v| ≤ k} 

Informally, merging two sets of cuts adds the trivial cut of the 
node to the set of pair-wise unions of cuts belonging to the fanins, 
while keeping only K-feasible cuts.  

The resulting set of cuts, Φ(n), may contain duplicated and 
dominated cuts. Removing them before computing cuts for the 
next node in the order reduces the number of cut pairs considered, 
without impacting the quality of mapping. In practice, the total 
number of cut pairs tried greatly exceeds the number of K-feasible 
cuts found. This makes checking K-feasibility of the unions of cut 
pairs, and testing duplication and dominance of individual cuts, 
the performance bottle-neck of the cut computation.  
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3.2 Using signatures 
In this paper, we propose to use signatures for testing cut 

properties, such as duplication, dominance, and K-feasibility. 
Conceptually, it is similar to the use of Bloom filters for encoding 
sets [1] and to the use of signatures for comparing clauses in [9]. 
Note that the use of signatures only speeds up the computation; no 
pruning is done. 

A signature, sign(C), of cut C is an M-bit integer whose bit-wise 
representation contains 1s in the positions corresponding to the 
node IDs. The signature is computed by the arithmetic addition of 
integers as follows:   

sign(C) = ID( ) mod2
n C

n M

∈
∑ . 

Testing cut properties with signatures is much faster than testing 
them by directly comparing leaves. The following propositions 
state the necessary conditions for duplication, dominance, and K-
feasibility of cuts. The contrapositives of the propositions are the 
sufficient conditions for the cuts to be non-duplicated, non-
dominated, and not K-feasible.  

Proposition 1: If cuts C1 and C2 are equal, so are their 
signatures. (Thus, if the signatures of C1 and C2 are not equal, 
neither are the cuts.) 

Proposition 2: If cut C1 dominates cut C2, the 1s of sign(C1) are 
contained in the 1s of sign(C2). (Thus, if 1s of sign(C1) are not 
contained in the 1s of sign(C2), then cut C1 does not dominate cut 
C2.) 

Proposition 3: If C1 ∪ C2 is a K-feasible cut, |sign(C1) + 
sign(C2)| ≤ K. (Thus, if |sign(C1) + sign(C2)| > K, then C1 ∪ C2 is 
not a K-feasible cut.) Here |n| denotes the number of ones in the 
binary representation of n, and addition is done modulo M.  

Our current implementation uses one machine word (composed 
of 32 bits on a 32-bit machine) to represent the signature of a cut 
i.e. M = 32. As a result, most of the checks are performed using 
several bit-wise machine operations, and only if the signatures fail 
to disprove a property, the actual comparison of leaves is 
performed. 

3.3 Practical observations 
In the literature on technology mapping, the 4-input and 5-input 

cuts are typically computed exhaustively, whereas computation of 
cuts with more inputs is considered time-consuming because of 
the large number of these cuts. Different heuristics have been 
investigated in the literature [7] to rank and prune cuts to reduce 
the run-time. We experimented with these heuristics and found 
that they work for area but lead to sub-optimal delay.  

In order to preserve delay optimality, we focus on perfecting the 
cut computation and computing all cuts whenever possible. 
Pruning is done only if the number of cuts at a node exceeds a 
predefined limit set to 1000 in our experiments. When computing 
K-feasible cuts with 4 ≤ K ≤ 7 for the largest MCNC benchmarks, 
the limit was never reached, and no pruning was performed, 
meaning that the cuts were computed exhaustively. Due to the use 
of signatures, the run-time for 4 ≤ K ≤ 7 was also quite affordable, 
as evidenced by the experiments. However, for 8-input cuts, 
pruning was required for some benchmarks.  

3.4 Reducing memory for cut representation 
The number of K-feasible cuts for K > 5 can be large. The 

average number of exhaustively computed 7-input cuts in the 

largest MCNC benchmarks is around 95 cuts per node. In large 
industrial designs, the total number of cuts could be of the order 
of tens of millions. Therefore, once the speed of cut enumeration 
is improved, memory usage for the cut representation becomes the 
next pressing issue. 

To address this issue, we modified the cut enumeration 
algorithm to free the cuts as soon as they are not needed for the 
subsequent enumeration steps. This idea is based on the 
observation that the cuts of the nodes, whose fanouts have already 
been processed, can be deallocated without impacting cut 
enumeration. It should be noted that if technology mapping is 
performed in several topological passes over the subject graph, 
the cuts are re-computed in each pass. However, given the speed 
of the improved cut computation, this does not seem to be a 
problem. 

Experimental results (presented in Table 2) show that by 
enabling cut dropping, as explained above, the memory usage for 
the cut representation is reduced by an order of magnitude for 
MCNC benchmarks. We see that for larger benchmarks, the 
reduction in memory is even more substantial. 

It is possible to reduce the run-time of the repeated cut 
computation by recording the “cut enumeration trace”, which is 
saved during the first pass of cut enumeration and used in the 
subsequent passes. The idea is based on the observation that, even 
when signatures are used, the most time-consuming part of the cut 
enumeration is determining what cut pairs lead to non-duplicated, 
non-dominated, K-feasible cuts at each node. The number of such 
cut pairs is very small, compared to the total number of cut pairs 
at each node. The cut enumeration trace recorded in the first pass 
compactly stores information about all such pairs and the order of 
merging them to produce all the K-feasible cuts at each node. The 
trace serves as an oracle for the subsequent cut enumeration 
passes, which can now skip checking all cut pairs and 
immediately derive useful cuts.  

This option was implemented and tested in our cut enumeration 
package but it was not used in the experimental results because 
the benchmarks allowed for storing all the cuts in memory at the 
same time. We mention this option here because we expect it to 
be useful for industrial mappers working on very large designs. 

4 Improved area recovery 
Exact area minimization during technology mapping for DAGs 

is NP-hard [10] and hence not tractable for large circuits. Various 
heuristics for approximate area minimization during mapping 
have shown good results [2][12][16][23].  

In this study, we use a combination of two heuristics, which 
work well in practice. The order of applying the heuristics is 
important since they are complementary. The first heuristic has a 
global view and selects logic cones with more shared logic. The 
second heuristic provides a missing local view by minimizing the 
area exactly at each node.  

4.1 Global view heuristic 
Area flow [16] (effective area [7]) is a useful extension of the 

notion of area. It can be computed in one pass over the network 
from the PIs to the POs. Area flow for the PIs is set to 0. Area 
flow at a node n is:  

AF(n) = [Area(n) + ΣiAF(Leafi(n))] / NumFanouts(n), 
where Area(n) is the area of the LUT used to map the current best 
cut of node n, Leafi(n) is the i-th leaf of the best cut at n, and 
NumFanouts(n) is the number of fanouts of node n in the 
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currently selected mapping. If a node is not used in the current 
mapping, for the purposes of area flow computation, its fanout 
count is assumed to be 1. 

If nodes are processed from the PIs to the POs, computing area 
flow is fast. The advantage of area flow over exact area is that area 
flow gives a global view of how useful is logic in the cone for the 
current mapping. Area flow estimates sharing between cones 
without the need to re-traverse them, which would be required if 
the exact area were computed. 

In our mapper, as in the previous work [2] and in [16], area 
flow is the tie-breaker used in the first pass when a delay-optimum 
mapping is computed. In the first stage of area recovery, area flow 
is the primary cost function used to choose among the cuts, whose 
arrival times do not exceed the required times.  

4.2 Local view heuristic 
The second heuristic providing a local view for area recovery in 

our mapper is not used in the previous work. This heuristic looks 
at the exact area to be gained by locally updating the best cut at 
each node when nodes are processed in the topological order. The 
exact area of a cut is defined as the sum of areas of the LUTs in 
the MFFC of the cut, i.e. the LUTs to be added to the mapping if 
the cut is selected as the best one. Thus, minimizing exact area at 
each node is a helpful heuristic to minimize the total area of the 
mapping, which still remains NP hard. 

The exact area of a cut is computed using a fast local DFS 
traversal of the subject graph starting from the root node. This 
traversal is similar to the recursive dereferencing of BDD nodes 
performed in a BDD package. The reference counter of a node in 
the subject graph is equal to the number of times it is used in the 
current mapping, i.e. the number of times it appears as a leaf of 
the best cut at some other node, or as a PO. Some internal nodes 
may have a zero reference counter, meaning that they are not used 
in the current mapping. 

The exact area computation procedure is called for a cut. It adds 
the cut area to the local area being computed, dereferences the cut 
leaves, and recursively call itself for the best cuts of the leaves 
whose reference counters are zero. This procedure recurs as many 
times as there are LUTs in the MFFC of the cut, for which it is 
called. This number is typically small, which explains why 
computing the exact area is reasonably quick. Once the exact area 
is computed, a similar recursive referencing is performed to reset 
the reference counters to their initial values, before computing the 
exact area for other cuts. 

We note here that MFFCs have been used in mapping 
previously [6]. Decomposition of the network into MFFCs was 
used for duplication-free mapping, which was alternated with 
depth relaxation for area minimization. Although both our method 
and [6] use MFFCs, the heuristics are different. In particular, our 
work employs reference counting for efficient computation and 
evaluation of MFFCs with duplication, which facilitates logic 
sharing. 

Experimentally we found that, after computing a delay-optimum 
mapping, two passes of area recovery are enough to produce a 
good quality mapping. The first pass uses the area flow; the 
second one uses the exact area. Iterating area recovery using both 
of the heuristics additionally saves up to 2% of the total area of 
mapping, which may or may not justify the extra run-time. 

It is interesting to observe that the previous work recovers area 
at each node in the reverse topological order, whereas our mapper 
works in the direct topological order. We argue that our approach 
works better for incremental area recovery since it allows most of 
the slack to be used on non-critical paths closer to the PIs where 
logic is denser and, therefore, optimization opportunities are more 
abundant. This argument is based on an observation that many 
circuits are wider on the PI side than on the PO side. 

5 Lossless synthesis 
The idea behind lossless logic synthesis is to “remember” some 

or all networks seen during a logic synthesis flow (or a set of 
flows) and to select the best parts of each network during 
technology mapping. This is useful for two reasons. 

First, technology-independent synthesis algorithms are usually 
heuristic, and so there is no guarantee that the final network is 
optimum. When only the final network is used for mapping, the 
mapper may miss a better result that could be obtained from an 
intermediate network in the flow. 

Second, synthesis operations usually apply to the network as a 
whole. So a flow to optimize delay may significantly increase 
area, since the whole network is optimized for delay. By 
combining such a delay-optimized network with another network 
that has been optimized for area, it is possible to get the best of 
both. On the critical path, the mapper can choose from the delay-
optimized network, whereas off the critical path, the mapper 
chooses from the area-optimized network. 

Section 5.1 gives an overview of constructing the choice 
network efficiently. Section 5.2 extends the cut computation to 
handle choices. 

5.1 Constructing the choice network 
The choice network is constructed from a collection of 

networks that are functionally equivalent. The key idea is to use 
recent advances in equivalence checking that are based on 
identifying functionally equivalent internal points in the networks 
being checked [13][15].  

Conceptually the procedure is as follows: one can imagine each 
network to be decomposed into AND gates and inverters to form 
an AIG. Now for every node in the network the global function is 
computed, say, by building BDDs. All those nodes which have the 
same global function are collected in equivalence classes. Thus, 
the choice network is an AIG which has multiple functionally 
equivalent points collected in equivalence classes. 

However, for large circuits computing global BDDs is not 
feasible. One can use random simulation to identify potentially 
equivalent nodes, and then use a SAT engine to verify 
equivalence and construct the equivalence classes. To this end, we 
implemented a package called FRAIG (Functionally Reduced 
And-Inverter Graphs) that exposes the APIs comparable to those 
of a BDD package but internally uses simulation and SAT. More 
details about FRAIGs may be found in the technical report [17]. 

Example. Figures 1 and 2 illustrate construction of a network 
with choices. Networks 1 and 2 in Figure 1 show the subject 
graphs obtained from two networks that are functionally 
equivalent but structurally different. The nodes x1 and x2 in the 
two subject graphs are functionally equivalent (up to 
complementation). They are combined in an equivalence class in 
the choice network, and an arbitrary member (x1 in this case) is set 
as the class representative. Node p does not lead to a choice 
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because p is structurally the same in both networks. Note also that 
there is no choice corresponding to the output node o since the 
procedure detects the maximal commonality of the two networks. 

A different way of generating choices is by iteratively applying 
the Λ- and Δ-transformations [14]. Given an AIG, we use the 
associativity of the AND operation to locally re-write the graph 
(the Λ-transformation), i.e. whenever the structure AND(AND(x1, 

x2), x3) is seen in the AIG, it is replaced by the equivalent 
structures AND(AND(x1, x3), x2) and AND(x1, AND(x2, x3)). If 
this process is done until no new AND nodes are created, it is 
equivalent to identifying the maximal multi-input AND-gates in 
the AIG and adding all possible tree decompositions of these 
gates. Similarly, the distributivity of AND over OR (the Δ-
transformation) provides another source of choices. 

Using structural choices leads to a new way of thinking about 
logic synthesis: rather than trying to come up with a good final 
netlist used as an input to mapping, one can accumulate choices 
by applying arbitrary transformations, which lead to improvement 
in some sense. The best combination of these choices is selected 
during mapping.  

5.2 Cut enumeration with choices 
The cut-based structural FPGA mapping procedure can be 

extended naturally to handle equivalence classes of nodes. It is 
remarkable that only the cut enumeration step needs modification. 

Given a node n, let N denote the equivalence class it belongs to. 
Let Φ(N) denote the set of cuts of the equivalence class N. Then, 
Φ(N) = ( )

n N

n
∈

ΦU , where, if a and b are the two inputs of n 

belonging to equivalence classes A and B, respectively,  
Φ(n) ={{n}} ∪ {u ∪ v | u ∈ Φ(A), u ∈ Φ(B), |u ∪ v| ≤ k}. 

This expression for Φ(n) is a slight modification of the one used 
in Section 3 to compute the cuts without choices. The cuts of n 
are obtained from the cuts of the equivalence classes of its fanins 
(instead of the cuts of its fanins). In the absence of choices (which 
corresponds to the situation when each equivalence class has only 
one node) this computation is the same as the one presented in 
Section 3. As before, the cut enumeration is done in one 
topological pass from the PIs to the POs. 

Example. Consider the computation of the 3-feasible cuts of the 
equivalence class {o} in Figure 2. Let X represent the equivalence 
class {x1, x2}. Now, Φ(X) = Φ(x1) ∪ Φ(x2) = {{x1}, {x2}, {q, r}, 
{p, s}, {q, p, e}, {p, d, r}, {p, d, e}, {b, c, s}}. We have Φ({o}) = 
Φ(o) = {{o}} ∪ {u ∪ v | u ∈ Φ({a}), u ∈ Φ({x1}), |u ∪ v| ≤ 3}.  

Since Φ({a}) = Φ(a) = {a} and Φ({x1}) = Φ(X), we get Φ({o}) 
= {{o}, {a, x1}, {a, x2}, {a, q, r}, {a, p, s}}. Observe that the set 
of cuts of o involves nodes from the two choices x1 and x2, i.e. o 
may be implemented using either of the two structures. 

The subsequent steps of the mapping process (computing delay-
optimum mapping and performing area recovery) remain 
unchanged, except that now the additional cuts can be used for 
mapping at each node. 

5.3 Related Work 
Technology mapping over a network that encodes different 

decompositions originated in the context of standard cell mapping 
in the work of Lehman et al. [14]. Chen and Cong adapted some 
aspects of this method for FPGAs in their work on SLDMap [4]. 
To be specific, they identified large (5- to 8-input) AND gates in 
the subject graph, and added choices corresponding to the 
different decompositions of the large AND gates into 2-input 
AND gates. They used BDDs to find globally equivalent points. 
This limited the scalability of the approach. 

The present work is an extension of our work in standard cells 
[3] to FPGA mapping. This approach differs from SLDMap in 
two ways. First, the use of structural equivalence checking instead 
of BDDs makes the choice detection scalable and robust. Second, 
instead of adding a dense set of algebraic choices by brute-force, 
we add a sparse set of (possibly Boolean) choices obtained from 
synthesis. The expectation is that most of the algebraic choices 
that are added are not useful, but increase run-time. In contrast the 
choices added from synthesis are expected to be better, since they 
are a result of optimization. This is supported by experiments on 
standard cells [3] and we expect similar results to hold for 
FPGAs. 

6 Experimental results 
The proposed improvements to FPGA technology mapping are 

currently implemented in MVSIS [20] as command fpga. The cut 
enumeration is implemented in ABC [21] as command cut. (Since 
the first version of this paper, command fpga was improved and 

Figure 1. Equivalent networks before choicing. 

Figure 2. The choice network. 
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ported to ABC, making ABC our main tool for future 
experiments.)  

6.1 Improved cut computation (run-time) 
Table 1 shows the results of cut computation for the largest 

MCNC benchmarks. To derive AIGs required for cut enumeration 
in ABC, the benchmarks were structurally hashed and balanced 
using command balance in ABC. 

The experiment was performed for computing K-feasible cuts 
for 4 ≤ K ≤ 8. Column N gives the number of AND nodes in the 
AIG for each benchmark. Columns C/N give the average number 
of cuts per node, including trivial cuts composed of the nodes 
themselves. Columns T give the run-time in seconds on an IBM 
ThinkPad laptop with 1.6GHz CPU and 1GB of RAM. The final 
column L/N lists the percentage of nodes, for which the number of 
8-input cuts exceeded the predefined limit, set to 1000 for 
benchmarks. In computing cuts for 4 ≤ K ≤ 7, the number of cuts 
never exceeded the limit and, as a result, the cuts are computed 
exhaustively.  

In summary, although the number of cuts and their 
computation time are exponential in the number of cut inputs (K), 
all the cuts can be computed for up to 7 inputs for most 
benchmarks in reasonable run-time, resulting in over 100 cuts per 
node.  

6.2 Improved cut computation (memory) 
The second experiment presented in Table 2 addresses the issue 

of memory requirements for the cut representation, by showing 
the reduction in the peak memory with and without cut dropping. 
The amount of memory used for a K-feasible cut in the ABC data 
structure is (12+4*K) bytes. 

Columns labeled Total list memory usage (in megabytes) for all 
the non-dominated, K-feasible cuts at all nodes. Columns labeled 
Drop list the peak memory usage (in megabytes) for the cuts at 
any moment in the process of cut enumeration, when the nodes 
are visited in the topological order and the cuts at a node are 
dropped as soon as the cuts at all the fanouts are computed.  

In summary, dropping cuts at the internal nodes after they are 
computed and used reduces memory requirements for the mapper 
by an order of magnitude on the largest MCNC benchmarks, and 
by more then two orders of magnitude on the large industrial 
benchmarks, such as [11]. 

6.3 Improved area recovery 
Sections DAOmap and MVSIS-baseline of Table 3 compare the 

FPGA mapping results for 5-input LUTs using DAOmap [2][1] 
and our mapper with improved area recovery. Both DAOmap and 
MVSIS were run on a 4 CPU 3.00GHz computer with 510Mb 
RAM under Linux. The benchmarks are pre-optimized using 
script.algebraic in SIS followed by decomposition into two-input 
gates using command dmig in the RASP package [8]. To ensure 
identical starting logic structures, the pre-optimized circuits from 
[2][1] were used in this experiment. All the resulting netlists have 
been verified by a SAT-based equivalence checker in MVSIS. 

Columns 2 and 5 give the number of logic levels of LUT 
networks after technology mapping. The values in these columns 
are equal in all but two cases. This supports the claim that both 
mappers perform delay-optimum mapping for the given logic 
structure. Differences may be explained by minor variations in the 
manipulation of the subject graph, such as AIG balancing 
performed by MVSIS. 

Columns 3 and 6 show the number of LUTs after technology 
mapping. The difference between the results produced by the two 
mappers reflects the fact that they use different area recovery 
heuristics and, possibly, that MVSIS-baseline performs area 
recovery in a topological order, whereas DAOmap uses a reverse 
topological order.  

Columns 4 and 7 report the run-times in seconds. These include 
the time for constructing the subject graph and perform 
technology mapping with area recovery but not the time for 
reading the input BLIF file. For smaller benchmarks, the 
differences in run-times might be explained by the differences in 
the basic data structures. The increased run-time advantages of 
MVSIS on larger benchmarks may be due to better scalability and 
filtering heuristics employed by the MVSIS mapper.  

In summary, Table 3 demonstrates that the mapper in MVSIS 
designed using the proposed heuristics for area recovery 
outperforms DAOmap in area and run-time.  

The run-time of FPGA mapping is dominated by the K-feasible 
cut computation. The results for MVSIS reported in Table 3 use 
an old implementation of cut enumeration, which is several times 
slower than that reported in Table 1. We expect the run-time of 
the proposed mapper to improve after integrating the new cut 
computation. 

6.4 Lossless synthesis 
Section MVSIS-choices of Table 3 gives mapping results for the 

same benchmarks when lossless synthesis is applied. The 
alternative logic structures were generated in MVSIS by applying 
choice.script given in [3]. This script is similar to script.rugged in 
SIS. The difference is that the original network and five 
intermediate networks are combined into one choice network 
while detecting functionally equivalent nodes, as shown in 
Section 5. The mapping run-time listed in Table 3 does not 
include the run-time of choicing. This run-time was smaller than 
the run-time of intermediate transformations of technology 
independent synthesis (such as eliminate, fast_extract, sweep etc). 

Section MVSIS-choices 2x shows the results of repeated 
application of mapping with choices. For this, the netlist mapped 
into LUTs by the first mapping with choices was decomposed into 
an AIG by factoring logic functions of the LUTs, and subjected 
again to lossless synthesis followed by mapping with choices. The 
last column shows the run-time, in seconds, taken by the second 
iteration of mapping with choices. As before, this run-time does 
not include the run-time of logic optimization and choice 
generation resulting from applying choice.script. 

In summary, the above experiments demonstrate that lossless 
synthesis has a potential for substantially reducing delay and area 
of the mapped netlists, both as a stand-alone mapping procedure 
and as a post-processing step applied to the already computed 
FPGA mapping. 

7 Conclusions 
The paper presented several improvements to the state-of-the-art 

in technology mapping for LUT-based FPGAs. The improvements 
are: (1) reduction in run-time and memory requirements for cut 
enumeration; (2) improved area recovery through combined use of 
global-view and local-view heuristics; and (3) improved delay and 
area through the use of multiple circuit structures to mitigate 
structural bias during technology mapping.  

The experimental results confirm that the improved area 
recovery procedure leads, on average, to a 3x improvement in run-
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time and a 7% smaller area, compared to DAOmap, while 
preserving the optimum delay when starting from the same logic 
structure. When multiple logic structures are used in lossless 
synthesis, the proposed mapper leads to 7% improvement in delay 
along with a 14% reduction in area with a slight increase in run-
time, compared to DAOmap. 

The next step is integrating the efficient cut enumeration 
package into the FPGA mapper (currently the mapper uses simple 
cut enumeration without cut dropping). The future work will also 
extend the FPGA mapping to perform integrated sequential 
optimization, which consists of logic restructuring, mapping, and 
retiming, as presented in [19]. 
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Table 1. Performance of improved K-feasible cut computation (see Section 6.1). 

 
  K = 4 K = 5 K = 6 K = 7 K = 8 

Name N C/N T, s C/N T, s C/N T, s C/N T, s C/N T, s L/N, %
alu4 2642 6.7 0.00 12.3 0.01 23.1 0.04 45.5 0.18 94.7 1.02 0.00
apex2 2940 7.2 0.01 14.2 0.02 29.2 0.07 62.6 0.32 139.7 1.90 0.00
apex4 2017 8.5 0.00 19.5 0.03 47.0 0.10 116.3 0.62 293.5 4.49 0.10
bigkey 3080 6.6 0.01 12.1 0.02 24.2 0.05 50.1 0.20 99.7 0.84 0.00
clma 11869 8.1 0.04 18.2 0.11 44.4 0.51 114.9 3.01 306.3 20.99 1.64
des 3020 8.0 0.01 17.0 0.03 38.7 0.12 92.0 0.69 218.0 4.80 4.37
diffeq 2566 6.5 0.01 12.3 0.01 26.6 0.07 65.0 0.50 155.9 2.80 3.66
dsip 2521 6.2 0.01 10.7 0.01 20.7 0.03 42.0 0.10 86.7 0.44 0.00
elliptic 5502 6.4 0.01 10.6 0.03 18.5 0.07 36.9 0.33 83.4 2.12 0.20
ex1010 7652 9.2 0.02 23.3 0.11 61.8 0.61 165.8 4.01 438.2 30.43 1.99
ex5p 1719 9.4 0.01 24.1 0.02 66.2 0.17 188.2 1.30 514.8 10.50 14.14
frisc 5905 7.1 0.01 14.4 0.04 32.3 0.16 79.8 0.88 209.0 6.30 1.24
misex3 2441 7.7 0.01 15.7 0.02 33.3 0.08 73.7 0.38 170.7 2.48 0.00
pdc 7527 9.4 0.03 24.8 0.12 67.4 0.68 183.7 4.41 489.4 31.71 4.40
s298 2514 7.9 0.00 17.5 0.02 44.0 0.13 121.9 0.94 346.5 7.10 7.56
s38417 12867 6.6 0.03 13.5 0.10 32.0 0.46 83.1 3.24 225.9 23.72 3.38
s38584.1 11074 6.1 0.03 11.4 0.06 22.4 0.20 46.7 0.98 101.5 5.81 0.86
seq 2761 7.5 0.00 15.2 0.02 31.7 0.08 68.6 0.37 153.3 2.25 0.04
spla 6556 9.6 0.03 25.8 0.11 73.9 0.69 215.5 4.98 561.4 31.14 13.83
tseng 1920 6.5 0.01 11.8 0.01 23.5 0.04 50.6 0.21 112.7 1.32 1.35
Average 4954.

65 
7.56 0.01 16.22 0.05 38.05 0.22 95.15 1.38 240.0

7 
9.61 2.94

 
 
 

Table 2. Peak memory requirements, in megabytes, for the cuts with and without dropping (see Section 6.2). 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 K = 4 K = 5 K = 6 K = 7 K = 8 
Name Total Drop Total Drop Total Drop Total Drop Total Drop 

clma 2.56 0.10 6.60 0.22 18.09 0.54 52.03 1.47 152.55 4.07
ex1010 1.87 0.37 5.45 0.97 16.25 2.27 48.40 4.68 140.70 8.38
pdc 1.90 0.27 5.69 0.75 17.42 2.00 52.75 4.98 154.56 11.83
s38417 2.28 0.15 5.28 0.37 14.12 1.10 40.80 3.55 121.98 10.25
s38584.1 1.80 0.11 3.86 0.20 8.52 0.40 19.72 0.86 47.15 1.94
spla 1.68 0.21 5.15 0.59 16.63 1.65 53.88 4.34 154.44 10.04
Ratio 1.00 0.11 1.00 0.10 1.00 0.08 1.00 0.07 1.00 0.06
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Table 3. Comparing FPGA mapper with improvements with DAOmap [2] (see Section 6.3). 
 

DAOmap MVSIS-baseline MVSIS-choices MVSIS-choices 2x Example 
Depth LUTs T, s Depth LUTs T, s Depth LUTs T, s Depth LUTs T, s 

alu4 6 1065 0.5 6 992 0.34 6 972 0.64 6 949 +0.84
apex2 7 1352 0.6 7 1200 0.36 7 1249 0.95 7 1191 +1.34
apex4 6 931 0.7 6 891 0.24 6 895 0.74 6 894 +1.47
bigkey 3 1245 0.6 3 797 0.34 3 797 0.75 3 684 +1.07
clma 13 5425 5.9 13 4426 1.50 11 3883 4.30 11 3453 +5.20
des 5 965 0.8 5 1024 0.36 5 947 0.93 5 1104 +1.87
diffeq 10 817 0.6 10 844 0.30 9 745 0.46 9 736 +0.43
dsip 3 686 0.5 3 686 0.23 3 685 0.19 3 684 +0.36
elliptic 12 1965 2.0 12 2017 0.61 12 2005 0.72 12 2022 +1.25
ex1010 7 3564 4.0 7 3258 1.15 7 3305 3.39 7 3302 +5.80
ex5p 6 778 1.0 6 744 0.36 5 724 1.17 5 675 +1.40
frisc 16 1999 1.9 15 2009 0.76 14 1875 1.54 13 1867 +1.58
misex3 6 980 0.8 6 957 0.26 6 926 0.73 6 861 +0.94
pdc 7 3222 4.6 8 2920 1.13 7 2738 4.73 7 2692 +5.59
s298 13 1258 2.4 13 826 0.30 12 863 4.07 11 826 +1.49
s38417 9 3815 3.8 9 3864 1.46 8 2989 4.04 7 2729 +2.76
s38584 7 2987 27.0 7 2844 1.11 7 2497 2.58 6 2470 +1.69
seq 6 1188 0.8 6 1109 0.30 5 1136 0.79 6 1016 +1.38
spla 7 2734 4.0 7 2535 1.03 7 2319 4.68 7 2224 +4.79
tseng 10 706 0.6 10 752 0.25 8 719 0.39 8 705 +0.31
Ratio 1.00 1.00 1.00 1.00 0.93 0.37 0.95 0.89 0.95 0.93 0.86 1.46
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