
Improvements to Technology Mapping for LUT-Based
FPGAs

Alan Mishchenko Satrajit Chatterjee Robert Brayton
Department of EECS, University of California, Berkeley
{alanmi, satrajit, brayton}@eecs.berkeley.edu

Abstract
The paper presents several improvements to state-of-the-art in
FPGA technology mapping exemplified by a recent advanced
technology mapper DAOmap [Chen and Cong, ICCAD `04].
Improved cut enumeration computes all K-feasible cuts without
pruning for up to 7 inputs for the largest MCNC benchmarks. A
new technique for on-the-fly cut dropping reduces by orders of
magnitude memory needed to represent cuts for large designs.
Improved area recovery leads to mappings with area on average
7% smaller than DAOmap, while preserving delay optimality
when starting from the same optimized netlists. Applying mapping
with structural choices derived by a synthesis flow on average
reduces delay by 7% and area by 14%, compared to DAOmap.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—Optimization; B.7.1
[Integrated Circuits]: Types and Design Styles—Gate arrays;
J.6 [Computer-Aided Engineering]: Computer-aided design
(CAD)

General Terms
Algorithms

Keywords
FPGA, Technology Mapping, Cut Enumeration, Area Recovery,
Lossless Synthesis

1 Introduction
Field Programmable Gate Arrays (FPGAs) are an attractive

hardware design option, making technology mapping for FPGAs
an important EDA problem. For an excellent overview of the
classical and recent work on FPGA technology mapping, focusing
on area, delay, and power minimization, the reader is referred to
[2].

The recent advanced algorithms for FPGA mapping, such as
[2][12][16][23], focus on area minimization under delay
constraints. If delay constraints are not given, first the optimum
delay for the given logic structure is found and then area is
minimized without changing delay.

In terms of the algorithms employed, the mappers are divided
into structural and functional. Structural mappers consider the
circuit graph as a given and find a covering of the graph with K-
input subgraphs corresponding to LUTs. The functional
approaches perform Boolean decomposition of the logic functions
of the nodes into sub-functions of limited support size realizable
by individual LUTs.

Since functional mappers explore a larger solution space, they
tend to be time-consuming, which limits their use to small
designs. In practice, FPGA mapping for large designs is done
using structural mappers, whereas the functional mappers are used
for resynthesis after technology mapping.

In this paper, we consider the recent work on DAOmap [2] as
representative of the advanced structural technology mapping for
LUT-based FPGAs and refer to it as “the previous work” and
discuss several ways of improving it. Specifically, our
contributions fall into three categories:

(1) Improved cut computation

Computation of all K-feasible cuts is typically a run-time and
memory bottleneck of a structural mapper. We propose several
enhancements to the standard cut enumeration procedure [7][22].
Specifically, we introduce cut filtering with signatures and show
that it leads to a speed-up. This makes exhaustive cut enumeration
for 6 and 7 inputs practical for many test-cases.

Since the number of K-feasible cuts per node, for large K, can
exceed 100, storing all the computed cuts in memory is
problematic for large benchmarks. We address this difficulty by
allowing cut enumeration to “drop” the cuts at the nodes whose
fanouts have already been processed. This allows the mapper to
store only a small fraction of all K-feasible cuts at any time,
thereby reducing memory usage for large benchmarks by an order
of magnitude or more.

(2) Better, simpler, and faster area recovery

Area optimization after delay-optimum structural mapping
proceeds in several passes over the network. Each pass assigns
cuts with a better area among the ones that do not violate the
required time. The previous work relied on several sophisticated
heuristics for ranking the cuts, trying to estimate their potential to
save area. The previous work concluded that not all the heuristics
are equally useful but, to get good area, a number of them need to
be applied.

In this paper, we show that the combination of two simple
techniques is enough to ensure reasonable mapping quality and
improve on the results of the previous work by 7% on average.
The proposed combination of techniques works well since the first

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA '06, February 22–24, 2006, Monterey, California, USA.
Copyright 2006 ACM 1-59593-292-5/06/0002...$5.00.

41

one attempts heuristically to find a global optimum, whereas, the
second ensures that at least a local optimum is reached.

It should be noted that the first heuristic (known as effective
area [7] or area flow [16]) is used in the previous work but it is
applied in a reverse topological order, while we argue below that
a direct topological order works better.

(3) Lossless synthesis
The main drawback of the structural approaches to technology

mapping is their dependence on the initial circuit structure. If the
structure is bad, neither heuristics nor iterative recovery will
improve the results of mapping.

To obtain a good structure for the network several technology
independent synthesis steps are usually performed. An example of
this is script.rugged in SIS followed by a two-input gate
decomposition. Each synthesis step in the script is heuristic, and
the subject graph produced at the end is not necessarily optimum.
Indeed, it is possible that the initial or an intermediate network is
better in some respects than the final network.

In this paper, we explore the idea of combining these
intermediate networks into a single subject graph with choices and
using that to derive the mapped netlist. The mapper is not
constrained to use any one network, but can pick and choose the
best parts of each. We call this approach lossless synthesis, since
no network seen during the synthesis process is ever lost. By
including the initial network in the choice network, we can be
sure that the heuristic logic synthesis operations never make
things worse. We can also use multiple scripts and repeatedly go
through each accumulating more choices. We defer discussion of
related work to Section 5.3.

The rest of the paper is organized as follows. Section 2

describes the background. Sections 3-5 give details on the three
contributions of the paper listed above. Section 6 shows
experimental results. Section 7 concludes the paper and outlines
future work.

2 Background
A Boolean network is a directed acyclic graph (DAG) with

nodes corresponding to logic gates and directed edges
corresponding to wires connecting the gates. The terms network,
Boolean network, and circuit are used interchangeably in this
paper.

A node has zero or more fanins, i.e. nodes that are driving this
node, and zero or more fanouts, i.e. nodes driven by this node.
The primary inputs (PIs) of the network are nodes without fanins
in the current network. The primary outputs (POs) are a subset of
nodes of the network. If the network is sequential, the flip-flop
outputs/inputs are treated as additional PIs/POs. In the following,
it is assumed that each node has a unique integer number called
the node ID.

A network is K-bounded if the number of fanins of each node
does not exceed K. An subject graph is a K-bounded network
used for technology mapping. Any combinational network can be
represented as an AND-INV graph (AIG), composed of two-input
ANDs and inverters. Without limiting the generality, in this paper
we assume subject graphs to be AIGs.

A cut C of node n is a set of nodes of the network, called leaves,
such that each path from a PI to n passes through at least one leaf.
A trivial cut of the node is the cut composed of the node itself. A
cut is K-feasible if the number of nodes in it does not exceed K. A

cut is said to be dominated it there is another cut of the same
node, which is contained, set-theoretically, in the given cut.

A fanin (fanout) cone of node n is a subset of all nodes of the
network reachable through the fanin (fanout) edges from the given
node. A maximum fanout free cone (MFFC) of node n is a subset
of the fanin cone, such that every path from a node in the subset
to the POs passes through n. Informally, the MFFC of a node
contains all the logic used only by the node. When a node is
removed or substituted, the logic in its MFFC can also be
removed.

The level of a node is the length of the longest path from any PI
to the node. The node itself is counted towards the path lengths
but the PIs are not. The network depth is the largest level of an
internal node in the network. The delay and area of FPGA
mapping is measured by the depth of the resulting LUT network
and the number of LUTs in it.

A typical procedure for structural technology mapping performs
the following steps:

1. Cut computation.
2. Delay-optimum mapping.
3. Area recovery using heuristics.
4. Writing out the resulting LUT network.
For a detailed description on these steps, we refer the reader to

[2] and [16].

3 Improved cut computation
Structural technology mapping into FPGAs containing K-input

LUTs starts by computing K-feasible cuts for each internal two-
input node of the subject graph.

Of the two procedures for cut computation, the network flow [5]
and the cut enumeration [7][22], the latter is faster. The advantage
of the former is that it can be applied incrementally to compute
cuts for individual nodes. However, at the beginning of mapping,
computing cuts for all nodes is desirable.

3.1 Cut enumeration
The result of cut enumeration is a set of all K-feasible cuts

assigned for each node. Cut enumeration starts at the PIs and
proceeds in the topological order to the POs. Processing nodes in
the topological order guarantees that cut computation is called for
an internal node after it has completed for its fanins. For a PI, the
set of cuts contains only the trivial cut. For an internal node n
with two fanins, a and b, the set of cuts Φ(n) is computed by
merging the sets of cuts of a and b as follows:

Φ(n) ={{n}} ∪ {u ∪ v | u ∈ Φ(a), u ∈ Φ(b), |u ∪ v| ≤ k}

Informally, merging two sets of cuts adds the trivial cut of the
node to the set of pair-wise unions of cuts belonging to the fanins,
while keeping only K-feasible cuts.

The resulting set of cuts, Φ(n), may contain duplicated and
dominated cuts. Removing them before computing cuts for the
next node in the order reduces the number of cut pairs considered,
without impacting the quality of mapping. In practice, the total
number of cut pairs tried greatly exceeds the number of K-feasible
cuts found. This makes checking K-feasibility of the unions of cut
pairs, and testing duplication and dominance of individual cuts,
the performance bottle-neck of the cut computation.

42

3.2 Using signatures
In this paper, we propose to use signatures for testing cut

properties, such as duplication, dominance, and K-feasibility.
Conceptually, it is similar to the use of Bloom filters for encoding
sets [1] and to the use of signatures for comparing clauses in [9].
Note that the use of signatures only speeds up the computation; no
pruning is done.

A signature, sign(C), of cut C is an M-bit integer whose bit-wise
representation contains 1s in the positions corresponding to the
node IDs. The signature is computed by the arithmetic addition of
integers as follows:

sign(C) = ID() mod2
n C

n M

∈
∑ .

Testing cut properties with signatures is much faster than testing
them by directly comparing leaves. The following propositions
state the necessary conditions for duplication, dominance, and K-
feasibility of cuts. The contrapositives of the propositions are the
sufficient conditions for the cuts to be non-duplicated, non-
dominated, and not K-feasible.

Proposition 1: If cuts C1 and C2 are equal, so are their
signatures. (Thus, if the signatures of C1 and C2 are not equal,
neither are the cuts.)

Proposition 2: If cut C1 dominates cut C2, the 1s of sign(C1) are
contained in the 1s of sign(C2). (Thus, if 1s of sign(C1) are not
contained in the 1s of sign(C2), then cut C1 does not dominate cut
C2.)

Proposition 3: If C1 ∪ C2 is a K-feasible cut, |sign(C1) +
sign(C2)| ≤ K. (Thus, if |sign(C1) + sign(C2)| > K, then C1 ∪ C2 is
not a K-feasible cut.) Here |n| denotes the number of ones in the
binary representation of n, and addition is done modulo M.

Our current implementation uses one machine word (composed
of 32 bits on a 32-bit machine) to represent the signature of a cut
i.e. M = 32. As a result, most of the checks are performed using
several bit-wise machine operations, and only if the signatures fail
to disprove a property, the actual comparison of leaves is
performed.

3.3 Practical observations
In the literature on technology mapping, the 4-input and 5-input

cuts are typically computed exhaustively, whereas computation of
cuts with more inputs is considered time-consuming because of
the large number of these cuts. Different heuristics have been
investigated in the literature [7] to rank and prune cuts to reduce
the run-time. We experimented with these heuristics and found
that they work for area but lead to sub-optimal delay.

In order to preserve delay optimality, we focus on perfecting the
cut computation and computing all cuts whenever possible.
Pruning is done only if the number of cuts at a node exceeds a
predefined limit set to 1000 in our experiments. When computing
K-feasible cuts with 4 ≤ K ≤ 7 for the largest MCNC benchmarks,
the limit was never reached, and no pruning was performed,
meaning that the cuts were computed exhaustively. Due to the use
of signatures, the run-time for 4 ≤ K ≤ 7 was also quite affordable,
as evidenced by the experiments. However, for 8-input cuts,
pruning was required for some benchmarks.

3.4 Reducing memory for cut representation
The number of K-feasible cuts for K > 5 can be large. The

average number of exhaustively computed 7-input cuts in the

largest MCNC benchmarks is around 95 cuts per node. In large
industrial designs, the total number of cuts could be of the order
of tens of millions. Therefore, once the speed of cut enumeration
is improved, memory usage for the cut representation becomes the
next pressing issue.

To address this issue, we modified the cut enumeration
algorithm to free the cuts as soon as they are not needed for the
subsequent enumeration steps. This idea is based on the
observation that the cuts of the nodes, whose fanouts have already
been processed, can be deallocated without impacting cut
enumeration. It should be noted that if technology mapping is
performed in several topological passes over the subject graph,
the cuts are re-computed in each pass. However, given the speed
of the improved cut computation, this does not seem to be a
problem.

Experimental results (presented in Table 2) show that by
enabling cut dropping, as explained above, the memory usage for
the cut representation is reduced by an order of magnitude for
MCNC benchmarks. We see that for larger benchmarks, the
reduction in memory is even more substantial.

It is possible to reduce the run-time of the repeated cut
computation by recording the “cut enumeration trace”, which is
saved during the first pass of cut enumeration and used in the
subsequent passes. The idea is based on the observation that, even
when signatures are used, the most time-consuming part of the cut
enumeration is determining what cut pairs lead to non-duplicated,
non-dominated, K-feasible cuts at each node. The number of such
cut pairs is very small, compared to the total number of cut pairs
at each node. The cut enumeration trace recorded in the first pass
compactly stores information about all such pairs and the order of
merging them to produce all the K-feasible cuts at each node. The
trace serves as an oracle for the subsequent cut enumeration
passes, which can now skip checking all cut pairs and
immediately derive useful cuts.

This option was implemented and tested in our cut enumeration
package but it was not used in the experimental results because
the benchmarks allowed for storing all the cuts in memory at the
same time. We mention this option here because we expect it to
be useful for industrial mappers working on very large designs.

4 Improved area recovery
Exact area minimization during technology mapping for DAGs

is NP-hard [10] and hence not tractable for large circuits. Various
heuristics for approximate area minimization during mapping
have shown good results [2][12][16][23].

In this study, we use a combination of two heuristics, which
work well in practice. The order of applying the heuristics is
important since they are complementary. The first heuristic has a
global view and selects logic cones with more shared logic. The
second heuristic provides a missing local view by minimizing the
area exactly at each node.

4.1 Global view heuristic
Area flow [16] (effective area [7]) is a useful extension of the

notion of area. It can be computed in one pass over the network
from the PIs to the POs. Area flow for the PIs is set to 0. Area
flow at a node n is:

AF(n) = [Area(n) + ΣiAF(Leafi(n))] / NumFanouts(n),
where Area(n) is the area of the LUT used to map the current best
cut of node n, Leafi(n) is the i-th leaf of the best cut at n, and
NumFanouts(n) is the number of fanouts of node n in the

43

currently selected mapping. If a node is not used in the current
mapping, for the purposes of area flow computation, its fanout
count is assumed to be 1.

If nodes are processed from the PIs to the POs, computing area
flow is fast. The advantage of area flow over exact area is that area
flow gives a global view of how useful is logic in the cone for the
current mapping. Area flow estimates sharing between cones
without the need to re-traverse them, which would be required if
the exact area were computed.

In our mapper, as in the previous work [2] and in [16], area
flow is the tie-breaker used in the first pass when a delay-optimum
mapping is computed. In the first stage of area recovery, area flow
is the primary cost function used to choose among the cuts, whose
arrival times do not exceed the required times.

4.2 Local view heuristic
The second heuristic providing a local view for area recovery in

our mapper is not used in the previous work. This heuristic looks
at the exact area to be gained by locally updating the best cut at
each node when nodes are processed in the topological order. The
exact area of a cut is defined as the sum of areas of the LUTs in
the MFFC of the cut, i.e. the LUTs to be added to the mapping if
the cut is selected as the best one. Thus, minimizing exact area at
each node is a helpful heuristic to minimize the total area of the
mapping, which still remains NP hard.

The exact area of a cut is computed using a fast local DFS
traversal of the subject graph starting from the root node. This
traversal is similar to the recursive dereferencing of BDD nodes
performed in a BDD package. The reference counter of a node in
the subject graph is equal to the number of times it is used in the
current mapping, i.e. the number of times it appears as a leaf of
the best cut at some other node, or as a PO. Some internal nodes
may have a zero reference counter, meaning that they are not used
in the current mapping.

The exact area computation procedure is called for a cut. It adds
the cut area to the local area being computed, dereferences the cut
leaves, and recursively call itself for the best cuts of the leaves
whose reference counters are zero. This procedure recurs as many
times as there are LUTs in the MFFC of the cut, for which it is
called. This number is typically small, which explains why
computing the exact area is reasonably quick. Once the exact area
is computed, a similar recursive referencing is performed to reset
the reference counters to their initial values, before computing the
exact area for other cuts.

We note here that MFFCs have been used in mapping
previously [6]. Decomposition of the network into MFFCs was
used for duplication-free mapping, which was alternated with
depth relaxation for area minimization. Although both our method
and [6] use MFFCs, the heuristics are different. In particular, our
work employs reference counting for efficient computation and
evaluation of MFFCs with duplication, which facilitates logic
sharing.

Experimentally we found that, after computing a delay-optimum
mapping, two passes of area recovery are enough to produce a
good quality mapping. The first pass uses the area flow; the
second one uses the exact area. Iterating area recovery using both
of the heuristics additionally saves up to 2% of the total area of
mapping, which may or may not justify the extra run-time.

It is interesting to observe that the previous work recovers area
at each node in the reverse topological order, whereas our mapper
works in the direct topological order. We argue that our approach
works better for incremental area recovery since it allows most of
the slack to be used on non-critical paths closer to the PIs where
logic is denser and, therefore, optimization opportunities are more
abundant. This argument is based on an observation that many
circuits are wider on the PI side than on the PO side.

5 Lossless synthesis
The idea behind lossless logic synthesis is to “remember” some

or all networks seen during a logic synthesis flow (or a set of
flows) and to select the best parts of each network during
technology mapping. This is useful for two reasons.

First, technology-independent synthesis algorithms are usually
heuristic, and so there is no guarantee that the final network is
optimum. When only the final network is used for mapping, the
mapper may miss a better result that could be obtained from an
intermediate network in the flow.

Second, synthesis operations usually apply to the network as a
whole. So a flow to optimize delay may significantly increase
area, since the whole network is optimized for delay. By
combining such a delay-optimized network with another network
that has been optimized for area, it is possible to get the best of
both. On the critical path, the mapper can choose from the delay-
optimized network, whereas off the critical path, the mapper
chooses from the area-optimized network.

Section 5.1 gives an overview of constructing the choice
network efficiently. Section 5.2 extends the cut computation to
handle choices.

5.1 Constructing the choice network
The choice network is constructed from a collection of

networks that are functionally equivalent. The key idea is to use
recent advances in equivalence checking that are based on
identifying functionally equivalent internal points in the networks
being checked [13][15].

Conceptually the procedure is as follows: one can imagine each
network to be decomposed into AND gates and inverters to form
an AIG. Now for every node in the network the global function is
computed, say, by building BDDs. All those nodes which have the
same global function are collected in equivalence classes. Thus,
the choice network is an AIG which has multiple functionally
equivalent points collected in equivalence classes.

However, for large circuits computing global BDDs is not
feasible. One can use random simulation to identify potentially
equivalent nodes, and then use a SAT engine to verify
equivalence and construct the equivalence classes. To this end, we
implemented a package called FRAIG (Functionally Reduced
And-Inverter Graphs) that exposes the APIs comparable to those
of a BDD package but internally uses simulation and SAT. More
details about FRAIGs may be found in the technical report [17].

Example. Figures 1 and 2 illustrate construction of a network
with choices. Networks 1 and 2 in Figure 1 show the subject
graphs obtained from two networks that are functionally
equivalent but structurally different. The nodes x1 and x2 in the
two subject graphs are functionally equivalent (up to
complementation). They are combined in an equivalence class in
the choice network, and an arbitrary member (x1 in this case) is set
as the class representative. Node p does not lead to a choice

44

because p is structurally the same in both networks. Note also that
there is no choice corresponding to the output node o since the
procedure detects the maximal commonality of the two networks.

A different way of generating choices is by iteratively applying
the Λ- and Δ-transformations [14]. Given an AIG, we use the
associativity of the AND operation to locally re-write the graph
(the Λ-transformation), i.e. whenever the structure AND(AND(x1,

x2), x3) is seen in the AIG, it is replaced by the equivalent
structures AND(AND(x1, x3), x2) and AND(x1, AND(x2, x3)). If
this process is done until no new AND nodes are created, it is
equivalent to identifying the maximal multi-input AND-gates in
the AIG and adding all possible tree decompositions of these
gates. Similarly, the distributivity of AND over OR (the Δ-
transformation) provides another source of choices.

Using structural choices leads to a new way of thinking about
logic synthesis: rather than trying to come up with a good final
netlist used as an input to mapping, one can accumulate choices
by applying arbitrary transformations, which lead to improvement
in some sense. The best combination of these choices is selected
during mapping.

5.2 Cut enumeration with choices
The cut-based structural FPGA mapping procedure can be

extended naturally to handle equivalence classes of nodes. It is
remarkable that only the cut enumeration step needs modification.

Given a node n, let N denote the equivalence class it belongs to.
Let Φ(N) denote the set of cuts of the equivalence class N. Then,
Φ(N) = ()

n N

n
∈

ΦU , where, if a and b are the two inputs of n

belonging to equivalence classes A and B, respectively,
Φ(n) ={{n}} ∪ {u ∪ v | u ∈ Φ(A), u ∈ Φ(B), |u ∪ v| ≤ k}.

This expression for Φ(n) is a slight modification of the one used
in Section 3 to compute the cuts without choices. The cuts of n
are obtained from the cuts of the equivalence classes of its fanins
(instead of the cuts of its fanins). In the absence of choices (which
corresponds to the situation when each equivalence class has only
one node) this computation is the same as the one presented in
Section 3. As before, the cut enumeration is done in one
topological pass from the PIs to the POs.

Example. Consider the computation of the 3-feasible cuts of the
equivalence class {o} in Figure 2. Let X represent the equivalence
class {x1, x2}. Now, Φ(X) = Φ(x1) ∪ Φ(x2) = {{x1}, {x2}, {q, r},
{p, s}, {q, p, e}, {p, d, r}, {p, d, e}, {b, c, s}}. We have Φ({o}) =
Φ(o) = {{o}} ∪ {u ∪ v | u ∈ Φ({a}), u ∈ Φ({x1}), |u ∪ v| ≤ 3}.

Since Φ({a}) = Φ(a) = {a} and Φ({x1}) = Φ(X), we get Φ({o})
= {{o}, {a, x1}, {a, x2}, {a, q, r}, {a, p, s}}. Observe that the set
of cuts of o involves nodes from the two choices x1 and x2, i.e. o
may be implemented using either of the two structures.

The subsequent steps of the mapping process (computing delay-
optimum mapping and performing area recovery) remain
unchanged, except that now the additional cuts can be used for
mapping at each node.

5.3 Related Work
Technology mapping over a network that encodes different

decompositions originated in the context of standard cell mapping
in the work of Lehman et al. [14]. Chen and Cong adapted some
aspects of this method for FPGAs in their work on SLDMap [4].
To be specific, they identified large (5- to 8-input) AND gates in
the subject graph, and added choices corresponding to the
different decompositions of the large AND gates into 2-input
AND gates. They used BDDs to find globally equivalent points.
This limited the scalability of the approach.

The present work is an extension of our work in standard cells
[3] to FPGA mapping. This approach differs from SLDMap in
two ways. First, the use of structural equivalence checking instead
of BDDs makes the choice detection scalable and robust. Second,
instead of adding a dense set of algebraic choices by brute-force,
we add a sparse set of (possibly Boolean) choices obtained from
synthesis. The expectation is that most of the algebraic choices
that are added are not useful, but increase run-time. In contrast the
choices added from synthesis are expected to be better, since they
are a result of optimization. This is supported by experiments on
standard cells [3] and we expect similar results to hold for
FPGAs.

6 Experimental results
The proposed improvements to FPGA technology mapping are

currently implemented in MVSIS [20] as command fpga. The cut
enumeration is implemented in ABC [21] as command cut. (Since
the first version of this paper, command fpga was improved and

Figure 1. Equivalent networks before choicing.

Figure 2. The choice network.

45

ported to ABC, making ABC our main tool for future
experiments.)

6.1 Improved cut computation (run-time)
Table 1 shows the results of cut computation for the largest

MCNC benchmarks. To derive AIGs required for cut enumeration
in ABC, the benchmarks were structurally hashed and balanced
using command balance in ABC.

The experiment was performed for computing K-feasible cuts
for 4 ≤ K ≤ 8. Column N gives the number of AND nodes in the
AIG for each benchmark. Columns C/N give the average number
of cuts per node, including trivial cuts composed of the nodes
themselves. Columns T give the run-time in seconds on an IBM
ThinkPad laptop with 1.6GHz CPU and 1GB of RAM. The final
column L/N lists the percentage of nodes, for which the number of
8-input cuts exceeded the predefined limit, set to 1000 for
benchmarks. In computing cuts for 4 ≤ K ≤ 7, the number of cuts
never exceeded the limit and, as a result, the cuts are computed
exhaustively.

In summary, although the number of cuts and their
computation time are exponential in the number of cut inputs (K),
all the cuts can be computed for up to 7 inputs for most
benchmarks in reasonable run-time, resulting in over 100 cuts per
node.

6.2 Improved cut computation (memory)
The second experiment presented in Table 2 addresses the issue

of memory requirements for the cut representation, by showing
the reduction in the peak memory with and without cut dropping.
The amount of memory used for a K-feasible cut in the ABC data
structure is (12+4*K) bytes.

Columns labeled Total list memory usage (in megabytes) for all
the non-dominated, K-feasible cuts at all nodes. Columns labeled
Drop list the peak memory usage (in megabytes) for the cuts at
any moment in the process of cut enumeration, when the nodes
are visited in the topological order and the cuts at a node are
dropped as soon as the cuts at all the fanouts are computed.

In summary, dropping cuts at the internal nodes after they are
computed and used reduces memory requirements for the mapper
by an order of magnitude on the largest MCNC benchmarks, and
by more then two orders of magnitude on the large industrial
benchmarks, such as [11].

6.3 Improved area recovery
Sections DAOmap and MVSIS-baseline of Table 3 compare the

FPGA mapping results for 5-input LUTs using DAOmap [2][1]
and our mapper with improved area recovery. Both DAOmap and
MVSIS were run on a 4 CPU 3.00GHz computer with 510Mb
RAM under Linux. The benchmarks are pre-optimized using
script.algebraic in SIS followed by decomposition into two-input
gates using command dmig in the RASP package [8]. To ensure
identical starting logic structures, the pre-optimized circuits from
[2][1] were used in this experiment. All the resulting netlists have
been verified by a SAT-based equivalence checker in MVSIS.

Columns 2 and 5 give the number of logic levels of LUT
networks after technology mapping. The values in these columns
are equal in all but two cases. This supports the claim that both
mappers perform delay-optimum mapping for the given logic
structure. Differences may be explained by minor variations in the
manipulation of the subject graph, such as AIG balancing
performed by MVSIS.

Columns 3 and 6 show the number of LUTs after technology
mapping. The difference between the results produced by the two
mappers reflects the fact that they use different area recovery
heuristics and, possibly, that MVSIS-baseline performs area
recovery in a topological order, whereas DAOmap uses a reverse
topological order.

Columns 4 and 7 report the run-times in seconds. These include
the time for constructing the subject graph and perform
technology mapping with area recovery but not the time for
reading the input BLIF file. For smaller benchmarks, the
differences in run-times might be explained by the differences in
the basic data structures. The increased run-time advantages of
MVSIS on larger benchmarks may be due to better scalability and
filtering heuristics employed by the MVSIS mapper.

In summary, Table 3 demonstrates that the mapper in MVSIS
designed using the proposed heuristics for area recovery
outperforms DAOmap in area and run-time.

The run-time of FPGA mapping is dominated by the K-feasible
cut computation. The results for MVSIS reported in Table 3 use
an old implementation of cut enumeration, which is several times
slower than that reported in Table 1. We expect the run-time of
the proposed mapper to improve after integrating the new cut
computation.

6.4 Lossless synthesis
Section MVSIS-choices of Table 3 gives mapping results for the

same benchmarks when lossless synthesis is applied. The
alternative logic structures were generated in MVSIS by applying
choice.script given in [3]. This script is similar to script.rugged in
SIS. The difference is that the original network and five
intermediate networks are combined into one choice network
while detecting functionally equivalent nodes, as shown in
Section 5. The mapping run-time listed in Table 3 does not
include the run-time of choicing. This run-time was smaller than
the run-time of intermediate transformations of technology
independent synthesis (such as eliminate, fast_extract, sweep etc).

Section MVSIS-choices 2x shows the results of repeated
application of mapping with choices. For this, the netlist mapped
into LUTs by the first mapping with choices was decomposed into
an AIG by factoring logic functions of the LUTs, and subjected
again to lossless synthesis followed by mapping with choices. The
last column shows the run-time, in seconds, taken by the second
iteration of mapping with choices. As before, this run-time does
not include the run-time of logic optimization and choice
generation resulting from applying choice.script.

In summary, the above experiments demonstrate that lossless
synthesis has a potential for substantially reducing delay and area
of the mapped netlists, both as a stand-alone mapping procedure
and as a post-processing step applied to the already computed
FPGA mapping.

7 Conclusions
The paper presented several improvements to the state-of-the-art

in technology mapping for LUT-based FPGAs. The improvements
are: (1) reduction in run-time and memory requirements for cut
enumeration; (2) improved area recovery through combined use of
global-view and local-view heuristics; and (3) improved delay and
area through the use of multiple circuit structures to mitigate
structural bias during technology mapping.

The experimental results confirm that the improved area
recovery procedure leads, on average, to a 3x improvement in run-

46

time and a 7% smaller area, compared to DAOmap, while
preserving the optimum delay when starting from the same logic
structure. When multiple logic structures are used in lossless
synthesis, the proposed mapper leads to 7% improvement in delay
along with a 14% reduction in area with a slight increase in run-
time, compared to DAOmap.

The next step is integrating the efficient cut enumeration
package into the FPGA mapper (currently the mapper uses simple
cut enumeration without cut dropping). The future work will also
extend the FPGA mapping to perform integrated sequential
optimization, which consists of logic restructuring, mapping, and
retiming, as presented in [19].

Acknowledgment
 This research was supported in part by NSF contract,

CCR-0312676, by the MARCO Focus Center for Circuit System
Solution under contract 2003-CT-888 and by the California Micro
program with our industrial sponsors, Intel, Magma, and
Synplicity.

The authors are grateful to Jason Cong and Deming Chen for
providing the set of pre-optimized benchmarks from [2], which
allowed for a comparison with DAOmap in Table 3.

References
[1] B. Bloom. “Space/time tradeoffs in hash coding with

allowable errors,” Comm. of the ACM 13:7 (1970), pp. 422-
426.

[2] D. Chen, J. Cong. “DAOmap: A depth-optimal area
optimization mapping algorithm for FPGA designs,” Proc.
ICCAD ’04, pp. 752-757.

[3] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T.
Kam, "Reducing structural bias in technology mapping",
Proc. ICCAD '05, pp. 519-526.
http://www.eecs.berkeley.edu/~alanmi/
publications/2005/iccad05_map.pdf

[4] G. Chen and J. Cong, “Simultaneous logic decomposition
with technology mapping in FPGA designs,” Proc. FPGA
`01, pp 48-55.

[5] J. Cong and Y. Ding, “FlowMap: An optimal technology
mapping algorithm for delay optimization in lookup-table
based FPGA designs”, IEEE Trans. CAD, Vol.13(1), Jan.
1994, pp. 1-12.

[6] J. Cong and Y. Ding, “On area/depth trade-off in LUT-based
FPGA technology mapping,” IEEE Trans. VLSI, Vol 2(2),
Jun. 1994, pp 137-148.

[7] J. Cong, C. Wu and Y. Ding, “Cut ranking and pruning:
Enabling a general and efficient FPGA mapping solution,”
Proc. FPGA `99, pp. 29-36.

[8] J. Cong et al, RASP: FPGA/CPLD Technology Mapping and
Synthesis Package.
http://ballade.cs.ucla.edu/software_release/rasp/htdocs/

[9] N. Eén, A. Biere “Effective preprocessing in SAT through
variable and clause elimination,” Proc. SAT’05.

[10] A. Farrahi and M. Sarrafzadeh, “Complexity of lookup-table
minimization problem for FPGA technology mapping,” IEEE
Trans. CAD, vol. 13 (11), 1994, pp. 1319-1332.

[11] IWLS 2005 Benchmarks.
http://iwls.org/iwls2005/benchmarks.html

[12] C.-C. Kao, Y.-T. Lai, “An efficient algorithm for finding
minimum-area FPGA technology mapping". ACM TODAES,
vol. 10(1), Jan. 2005, pp. 168-186.

[13] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai,
“Robust boolean reasoning for equivalence checking and
functional property verification," IEEE Trans. CAD, Vol.
21(12), 2002, pp. 1377-1394.

[14] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness,
“Logic decomposition during technology mapping,” IEEE
Trans. CAD, vol. 16(8), 1997, pp. 813-833.

[15] F. Lu, L. Wang, K. Cheng, J. Moondanos and Z. Hanna, “A
signal correlation guided ATPG solver and its applications
for solving difficult industrial cases," Proc. DAC `03, pp.
668-673.

[16] V. Manohara-rajah, S. D. Brown, Z. G. Vranesic, “Heuristics
for area minimization in LUT-based FPGA technology
mapping,” Proc. IWLS ’04, pp. 14-21.

[17] A. Mishchenko, S. Chatterjee, R. Jiang, R. Brayton,
"FRAIGs: A unifying representation for logic synthesis and
verification," ERL Technical Report, EECS Dept., UC
Berkeley, March 2005.

[18] A. Mishchenko, S. Chatterjee, R. Brayton, and M. Ciesielski,
"An integrated technology mapping environment," Proc.
IWLS '05, pp. 383-390.
http://www.eecs.berkeley.edu/~alanmi/publications/2005/
iwls05_env.pdf

[19] A. Mishchenko, S. Chatterjee, R. Brayton, and P. Pan,
"Integrating logic synthesis, technology mapping, and
retiming", Proc. IWLS '05, pp. 383-390. Also, submitted to
DAC '06. http://www.eecs.berkeley.
edu/~alanmi/publications/2006/dac06_int.pdf

[20] MVSIS Group. MVSIS: Multi-Valued Logic Synthesis
System. UC Berkeley.
http://www-cad.eecs.berkeley.edu/mvsis/

[21] Berkeley Logic Synthesis and Verification Group, ABC: A
System for Sequential Synthesis and Verification, Release
50905. http://www.eecs.berkeley.edu/~alanmi/abc/

[22] P. Pan and C.-C. Lin, “A new retiming-based technology
mapping algorithm for LUT-based FPGAs,” Proc. FPGA
’98, pp. 35-42.

[23] M. Teslenko and E. Dubrova, “Hermes: LUT FPGA
technology mapping algorithm for area minimization with
optimum depth,” Proc. ICCAD ’04, pp. 748-751.

47

Table 1. Performance of improved K-feasible cut computation (see Section 6.1).

 K = 4 K = 5 K = 6 K = 7 K = 8

Name N C/N T, s C/N T, s C/N T, s C/N T, s C/N T, s L/N, %
alu4 2642 6.7 0.00 12.3 0.01 23.1 0.04 45.5 0.18 94.7 1.02 0.00
apex2 2940 7.2 0.01 14.2 0.02 29.2 0.07 62.6 0.32 139.7 1.90 0.00
apex4 2017 8.5 0.00 19.5 0.03 47.0 0.10 116.3 0.62 293.5 4.49 0.10
bigkey 3080 6.6 0.01 12.1 0.02 24.2 0.05 50.1 0.20 99.7 0.84 0.00
clma 11869 8.1 0.04 18.2 0.11 44.4 0.51 114.9 3.01 306.3 20.99 1.64
des 3020 8.0 0.01 17.0 0.03 38.7 0.12 92.0 0.69 218.0 4.80 4.37
diffeq 2566 6.5 0.01 12.3 0.01 26.6 0.07 65.0 0.50 155.9 2.80 3.66
dsip 2521 6.2 0.01 10.7 0.01 20.7 0.03 42.0 0.10 86.7 0.44 0.00
elliptic 5502 6.4 0.01 10.6 0.03 18.5 0.07 36.9 0.33 83.4 2.12 0.20
ex1010 7652 9.2 0.02 23.3 0.11 61.8 0.61 165.8 4.01 438.2 30.43 1.99
ex5p 1719 9.4 0.01 24.1 0.02 66.2 0.17 188.2 1.30 514.8 10.50 14.14
frisc 5905 7.1 0.01 14.4 0.04 32.3 0.16 79.8 0.88 209.0 6.30 1.24
misex3 2441 7.7 0.01 15.7 0.02 33.3 0.08 73.7 0.38 170.7 2.48 0.00
pdc 7527 9.4 0.03 24.8 0.12 67.4 0.68 183.7 4.41 489.4 31.71 4.40
s298 2514 7.9 0.00 17.5 0.02 44.0 0.13 121.9 0.94 346.5 7.10 7.56
s38417 12867 6.6 0.03 13.5 0.10 32.0 0.46 83.1 3.24 225.9 23.72 3.38
s38584.1 11074 6.1 0.03 11.4 0.06 22.4 0.20 46.7 0.98 101.5 5.81 0.86
seq 2761 7.5 0.00 15.2 0.02 31.7 0.08 68.6 0.37 153.3 2.25 0.04
spla 6556 9.6 0.03 25.8 0.11 73.9 0.69 215.5 4.98 561.4 31.14 13.83
tseng 1920 6.5 0.01 11.8 0.01 23.5 0.04 50.6 0.21 112.7 1.32 1.35
Average 4954.

65
7.56 0.01 16.22 0.05 38.05 0.22 95.15 1.38 240.0

7
9.61 2.94

Table 2. Peak memory requirements, in megabytes, for the cuts with and without dropping (see Section 6.2).

 K = 4 K = 5 K = 6 K = 7 K = 8
Name Total Drop Total Drop Total Drop Total Drop Total Drop

clma 2.56 0.10 6.60 0.22 18.09 0.54 52.03 1.47 152.55 4.07
ex1010 1.87 0.37 5.45 0.97 16.25 2.27 48.40 4.68 140.70 8.38
pdc 1.90 0.27 5.69 0.75 17.42 2.00 52.75 4.98 154.56 11.83
s38417 2.28 0.15 5.28 0.37 14.12 1.10 40.80 3.55 121.98 10.25
s38584.1 1.80 0.11 3.86 0.20 8.52 0.40 19.72 0.86 47.15 1.94
spla 1.68 0.21 5.15 0.59 16.63 1.65 53.88 4.34 154.44 10.04
Ratio 1.00 0.11 1.00 0.10 1.00 0.08 1.00 0.07 1.00 0.06

48

Table 3. Comparing FPGA mapper with improvements with DAOmap [2] (see Section 6.3).

DAOmap MVSIS-baseline MVSIS-choices MVSIS-choices 2x Example
Depth LUTs T, s Depth LUTs T, s Depth LUTs T, s Depth LUTs T, s

alu4 6 1065 0.5 6 992 0.34 6 972 0.64 6 949 +0.84
apex2 7 1352 0.6 7 1200 0.36 7 1249 0.95 7 1191 +1.34
apex4 6 931 0.7 6 891 0.24 6 895 0.74 6 894 +1.47
bigkey 3 1245 0.6 3 797 0.34 3 797 0.75 3 684 +1.07
clma 13 5425 5.9 13 4426 1.50 11 3883 4.30 11 3453 +5.20
des 5 965 0.8 5 1024 0.36 5 947 0.93 5 1104 +1.87
diffeq 10 817 0.6 10 844 0.30 9 745 0.46 9 736 +0.43
dsip 3 686 0.5 3 686 0.23 3 685 0.19 3 684 +0.36
elliptic 12 1965 2.0 12 2017 0.61 12 2005 0.72 12 2022 +1.25
ex1010 7 3564 4.0 7 3258 1.15 7 3305 3.39 7 3302 +5.80
ex5p 6 778 1.0 6 744 0.36 5 724 1.17 5 675 +1.40
frisc 16 1999 1.9 15 2009 0.76 14 1875 1.54 13 1867 +1.58
misex3 6 980 0.8 6 957 0.26 6 926 0.73 6 861 +0.94
pdc 7 3222 4.6 8 2920 1.13 7 2738 4.73 7 2692 +5.59
s298 13 1258 2.4 13 826 0.30 12 863 4.07 11 826 +1.49
s38417 9 3815 3.8 9 3864 1.46 8 2989 4.04 7 2729 +2.76
s38584 7 2987 27.0 7 2844 1.11 7 2497 2.58 6 2470 +1.69
seq 6 1188 0.8 6 1109 0.30 5 1136 0.79 6 1016 +1.38
spla 7 2734 4.0 7 2535 1.03 7 2319 4.68 7 2224 +4.79
tseng 10 706 0.6 10 752 0.25 8 719 0.39 8 705 +0.31
Ratio 1.00 1.00 1.00 1.00 0.93 0.37 0.95 0.89 0.95 0.93 0.86 1.46

49

