
On Resolution Proofs for Combinational Equivalence

Satrajit Chatterjee Alan Mishchenko
Robert Brayton

Department of EECS
U. C. Berkeley

{satrajit, alanmi, brayton}@eecs.berkeley.edu

Andreas Kuehlmann

Cadence Berkeley Labs
Cadence

kuehl@cadence.com

ABSTRACT
Modern combinational equivalence checking (CEC) engines
are complicated programs which are difficult to verify. In
this paper we show how a modern CEC engine can be mod-
ified to produce a proof of equivalence when it proves a miter
unsatisfiable. If the CEC engine formulates the problem as
a single SAT instance (call this näıve), one can use the res-
olution proof of unsatisfiability as a proof of equivalence.
However, a modern CEC engine does not directly invoke a
SAT solver for the whole miter, but instead uses a variety of
techniques such as structural hashing, detection of interme-
diate functional equivalences, and circuit re-writing to first
simplify the problem. We show that in spite of using these
simplification techniques, a CEC engine can be modified to
generate a single (extended) resolution proof for the whole
miter just as in the näıve case. The benefit of having a
single proof is that the proof verification program remains
extremely simple, and its correctness is much easier to es-
tablish than that of the CEC engine.

Categories and Subject Descriptors
B.6.3 [Logic Design]: design aids—verification

General Terms
Algorithms, Theory, Verification

Keywords
resolution proofs, equivalence checking, transformation-based
verification

1. RESOLUTION PROOFS

1.1 Example of a resolution proof
Consider the following unsatisfiable CNF SAT problem

(the clauses are numbered for convenience):

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.

1. (p ∨ a) 2. (p ∨ b) 3. (p ∨ a ∨ b)

4. (q ∨ a) 5. (q ∨ b) 6. (q ∨ a ∨ b)
7. (p ∨ q ∨ z) 8. (p ∨ q ∨ z) 9. (p ∨ q ∨ z)

10. (p ∨ q ∨ z) 11. (z)

Resolution [3] provides an easy way to check that this
problem is indeed unsatisfiable. One takes two clauses that
contain a variable, say x, in opposite polarity and constructs
the resolvent. The resolvent is the disjunction of all the
literals in the two clauses excluding x and x. For example,
resolving clauses 3 and 4 w.r.t. variable a produces the
clause (p ∨ b ∨ q). Adding a resolvent to the current set
of clauses does not alter satisfiability: The original set of
clauses has a satisfying assignment only if the new set does.

Note that the empty clause () can only be obtained by
resolving two contradictory unit clauses (x) and (x). Thus,
if a sequence of resolution steps leads to the empty clause,
the original set of clauses is verified to be unsatisfiable. As
an example, consider the following sequence of resolutions
deriving the empty clause. It is a resolution proof of unsat-
isfiability of the above problem:

12. (p ∨ b ∨ q) [from 3 and 4]
13. (p ∨ q) [from 5 and 12]
14. (p ∨ q ∨ a) [from 2 and 6]
15. (p ∨ q) [from 1 and 14]
16. (p ∨ q) [from 10 and 11]
17. (p ∨ q) [from 7 and 11]
18. (q) [from 13 and 16]
19. (q) [from 15 and 17]
20. () [from 18 and 19]

1.2 Deriving a resolution proof
Davis and Putnam [3] provided the first complete method

to generate a resolution proof for an unsatisfiable set of
clauses. However, their method required exponential space,
and was quickly superseded by the Davis-Putnam-Logemann-
Loveland (DPLL) method [4] of systematic case-splitting on
variables. However, DPLL does not directly generate a res-
olution proof. Since most modern SAT solvers are based
on DPLL, they do not directly produce a resolution proof.
DPLL can be seen as a resolution scheduling system, and
Zhang and Malik [17] showed how a modern SAT solver
(they used zChaff [14] as an example) can be modified to
generate a resolution proof for unsatisfiable instances.

In order to follow the rest of the paper, it is not necessary
to understand the details of Zhang and Malik’s construction.
We simply assume access to a SAT solver that can generate
resolution proofs of unsatisfiable instances.

600

33.4

Figure 1: (a) Two circuits to be checked for equiva-
lence. (b) The miter of the two circuits.

2. CEC PROOF VERIFICATION

2.1 Miter
In the combinational equivalence checking (CEC) prob-

lem, we are given two combinational circuits and the task
is to verify that they are equivalent. This is usually done
by constructing a miter. A miter is a circuit derived from
the two circuits to be checked by connecting corresponding
inputs together, adding 2-input xor gates on top of corre-
sponding outputs, and connecting the outputs of these xor
gates to a large or gate. The miter has a single output
which is the output of this or gate. If the output of the
miter can be shown to be constant 0, it is verified that the
two circuits are equivalent.

For example, Figure 1(a) shows two circuits to be checked
for equivalence. Figure 1(b) shows the corresponding miter
(there is no or gate at the top since the circuits have only
one output each).

For the rest of this paper, we assume that the input to the
CEC program is a miter and the task of the CEC program is
to prove that the miter implements the constant 0 function.

2.2 Naı̈ve CEC and Proof of Equivalence
It is well known that the combinational equivalence check-

ing problem can be formulated as a SAT instance. Every net
in the miter is assigned a variable and clauses corresponding
to each gate of the miter are added to the CNF. In addition,
the unit clause (z) is corresponding to the output z of the
miter is added to the CNF. If the SAT instance is unsatisfi-
able, then the two circuits are equivalent.

For example, the CNF corresponding to the miter of Fig-
ure 1(b) is the same as the example in Section 1.1. Clauses
1-3 and 4-6 correspond to the two and gates. Clauses 7-10
correspond to the xor gate, and clause 11 is the unit clause
corresponding to the output of the miter z.

Since a näıve equivalence checker directly invokes a SAT
solver, the resolution proof generated by the SAT solver suf-
fices as a proof of equivalence. Thus in our running example,
the SAT solver would generate a resolution proof such as the
one in Section 1.1 i.e. clauses 12-20.

2.3 Proof Verifier
The näıve CEC program writes out the original set of

clauses followed by the sequence of resolution steps to a
proof file. (Each resolution step is specified by the two

clauses and the variable.) The proof verifier takes the proof
file and the miter, and first ensures that the original clauses
in the file only include those from the miter. Next, it per-
forms the sequence of resolution steps in the proof file. Fi-
nally, it checks that the empty clause is derived at the end.
Note that the proof verifier is very simple and hence it is
easier to establish its correctness compared to that of the
CEC program and the SAT solver.

2.4 Our Goal
In practice the näıve approach to CEC does not work be-

cause the resulting SAT instance is usually hard. Therefore,
modern CEC programs (such as [13]) employ a variety of
techniques to simplify the SAT problems. The three most
important techniques are structural hashing [7, 8], identifi-
cation of intermediate equivalent points [2, 7, 8, 10, 9], and
circuit re-writing (i.e. light-weight logic synthesis) [1, 8, 12].
These techniques are powerful: in some cases, just struc-
tural hashing and re-writing suffice to prove the miter, and
the SAT solver is not even invoked.

The use of these techniques complicates the proof verifi-
cation. There is no single SAT problem corresponding to
the whole miter: the CEC program may solve a sequence of
smaller SAT problems. Furthermore, these SAT problems
need not be on the same circuit since structural hashing and
re-writing change the circuit structure. As a result, there is
no monolithic resolution proof to be checked by the verifier.

So how does one verify the correctness of a modern CEC
program? The approach we take in this paper is to modify
a modern CEC checker to produce a single resolution proof
for the miter – just as in the case of the näıve checker –
though behind the scenes the program may use structural
hashing, re-writing, etc. to prove the miter.

We want to emphasize that the proof verification proce-
dure as outlined in Section 2.3 remains largely unchanged.
(The only difference is that if re-writing is used, the gen-
erated proof is an extended resolution proof.) The verifica-
tion procedure still takes the miter, and a single (extended)
resolution proof and checks the validity of the proof w.r.t.
the miter. It is the responsibility of the CEC program to
generate a monolithic proof for the whole miter. In effect,
the CEC program constructs a single proof from the partial
proofs corresponding to the techniques it uses to establish
equivalence.

3. PORTRAIT OF CEC AS SYNTHESIS
A modern CEC checker may be viewed as a logic synthesis

engine that works on the miter to simplify it (eventually to
the constant zero function). There are two main techniques
used for this: (1) identification and removal of redundant
logic, and (2) light-weight logic synthesis through re-writing.

3.1 Identifying and Removing Redundant Logic
At each step, the CEC program reduces the logic in the

miter by identifying redundancies. These redundancies take
the form of two nets in the circuit that are functionally
equivalent. One of the nets (and the logic cone that is used
only for that net) can be removed, and the other net can be
used to drive the logic driven by the net that is removed.
There are two ways in which these redundancies are identi-
fied:

1. Structural Identification. If there are two gates in

601

the miter that have the same function and same inputs,
then they compute the same function, and their output
nets are equivalent.

2. Functional Identification. Simulation might indi-
cate that two nets always take on the same values. In
that case a SAT problem may be formulated to as-
sert the equivalence of the two nets. If the problem is
unsatisfiable, then the two nets are equivalent.

Fanout Transfer. Once two nets are proved equivalent
(through structural or functional identification), one net can
be disconnected from the pins it drives, and the other net
can be used to drive those pins.

Note that structural hashing [8] (without constant prop-
agation) is a combination of structural identification and
fanout transfer.

3.2 Re-writing
Logic synthesis using re-writing [1, 12] may be conceptu-

ally viewed as a four step process:

1. Logic insertion. A new single output logic cone is
introduced into the circuit.

2. The output of this cone is “proved” equivalent to an
existing node in the circuit (the node that is being re-
written). In re-writing, usually this is done by struc-
tural hashing or by Boolean matching using truth-
tables.

3. The fanouts of the existing node in the circuit are
transferred to the output node of the newly introduced
cone.

4. The other nodes in the new cone are structurally hashed
with existing nodes in the circuit when possible.

The key ingredient of re-writing is Step 1. The remaining
steps 2-4 are similar to those for identifying and removing
redundant logic. Thus re-writing is seen to be a logic inser-
tion step followed by functional identification, fanout trans-
fer and structural hashing. Furthermore, the logic insertion
step can be assumed to be the insertion of a single gate since
a logic cone can be constructed by inserting a single gate at
a time.

Constant Propagation. Constant propagation may be
seen to be a special case of re-writing (where a single gate is
replaced by a simpler gate possibly a buffer or a constant).

3.3 Catalog of Elementary Operations
From the above discussion we get a catalog of elementary

synthesis operations that the CEC engine performs during
verification to transform the circuit: (1) structural identifi-
cation, (2) functional identification, (3) fanout transfer, and
(4) logic insertion. We assume that the CEC program proves
the miter by a sequence of these elementary operations.

4. GENERATING RESOLUTION PROOFS

4.1 Overview
The proof starts off with the set of clauses corresponding

to the miter as described in Section 2.2. As the CEC pro-
gram proceeds, it performs a sequence of elementary opera-
tions (as listed in Section 3.3) to modify the miter. For each

elementary operation, a proof fragment that corresponds to
the operation is generated and added to the proof.

At any point in time during this process we maintain the
following invariant: The set of clauses corresponding to ev-
ery gate in the miter is “present” in the resolution proof.
This invariant ensures a correspondence between the miter
and the clauses derived by resolution and is called the cor-
respondence invariant.

Initially, the invariant holds trivially, since the resolu-
tion proof is started with the clauses corresponding to the
miter. Of the four elementary operations listed in Sec-
tion 3.3, fanout transfer and logic insertion are the only
two that change the structure of the miter by introducing
new gates or by changing existing gates. Therefore, when
those operations are executed, we derive clauses for the new
or modified gates by resolution. (These derivations are the
proof fragments.)

Thus when the CEC uses structural identification to prove
two nets n and m equivalent, it also generates a proof frag-
ment to derive the clauses (n∨m) and (n∨m) from the ex-
isting set of clauses in the proof. Later if the CEC program
transfers the fanouts of m to n, it generates another proof
fragment that uses the previously derived clauses (n ∨ m)
and (n∨m) to generate new clauses that correspond to the
modified gates in the miter.

Eventually, the CEC program succeeds in proving the
miter output – call it z – equivalent to the constant 0 net by
functional identification, or by re-writing (recall that con-
stant propagation is a special case of re-writing). The proof
fragment corresponding to these operations will generate the
unit clause (z). Resolving this unit clause with the clause
(z) which is part of the initial set of clauses leads to the
empty clause and completes the proof.

In the rest of this section we look at the nature of proof
fragments generated for each of the elementary operations
listed in Section 3.3.

4.2 Structural Identification
In structural identification, two nets n and m are estab-

lished to be equivalent based on the fact that they are driven
by the same type of gate, with identical inputs. The goal is
to generate a proof fragment to derive the clauses (n ∨ m)
and (n ∨ m) from the existing set of clauses in the proof.
This can be efficiently implemented by having a template of
the proof fragment that is instantiated with the actual vari-
ables corresponding to the variables assigned to the nets.
The template depends on the type of gate.

Suppose n = and(x, y), and m = and(x, y). From the
correspondence invariant, we know that the clauses corre-
sponding to the two and gates already exist in the resolution
proof. Let those clauses be numbered as follows:

c1: (n ∨ x) c2: (n ∨ y) c3: (n ∨ x ∨ y)
d1: (m ∨ x) d2: (m ∨ y) d3: (m ∨ x ∨ y)

The proof fragment generated would be:
t1: (n ∨ y ∨m) [from c3 and d1]
t2: (n ∨m) [from t1 and d2]
t3: (n ∨m ∨ x) [from c2 and d3]
t4: (n ∨m) [from c1 and t3]

Thus the required clauses (n ∨ m) and (n ∨ m) are derived
from previously derived clauses. For a different pair, say n′

= and(x′, y′) and m′ = and(x′, y′), we can use the same
fragment replacing x by x′, y by y′, n by n′ and m by m′.
The fragment thus serves as a template that can be used to

602

identify any two structurally equivalent and nodes in the
miter.

Note that if the miter was an And-Inverter Graph, then
the only template needed would be the one above for an
and gate. If other types of gates (such as xor, mux, etc.)
are allowed, they would require their own specific templates.
(For complex gates or complicated structural identifications,
these templates can be pre-computed by formulating a small
equivalence checking problem and obtaining the resolution
proof from a SAT solver.)

Example. In the example of Figure 1(a), the two and
gates are structurally identical. Therefore we can instantiate
the above template with x = a, y = b, n = p and m = q.
Clauses c1 − c3 and d1 − d3 correspond to clauses 1− 3 and
4− 6 in Section 1.1. With that we can obtain the following
derivations for (p ∨ q) and (p ∨ q):

t1: (p ∨ b ∨ q) [from 3 and 4]
t2: (p ∨ q) [from t1 and 5]
t3: (p ∨ q ∨ a) [from 2 and 6]
t4: (p ∨ q) [from 1 and t3]

4.3 Functional Identification
In functional identification, once again the goal is to pro-

vide a proof fragment that derives the clauses (n ∨ m) and
(n∨m), for two nets n and m that are known to be equiva-
lent. However, in this case the situation is more complicated
since the equivalence is established by constructing two SAT
instances:

1. C · (n) · (m) 2. C · (n) · (m)

where C is the set of clauses corresponding to the gates in
the cone of logic driving n and m. If both instances are
unsatisfiable, then n is equivalent to m.

(Note that if the nets are constant zero or constant one,
one problem is trivially unsatisfiable. In what follows we do
not consider this case, but it is a straightforward extension.)

At first, it may seem like obtaining the resolution proof in
this case should be simple, since the SAT solver can be asked
to generate the resolution proof of unsatisfiability. But this
does not work. Consider the resolution proof for unsatisfia-
bility of (1). It derives the empty clause, starting from the
clauses C(n)(m). However, we are interested in generating
the clause (n ∨ m) starting from only C. (i.e. in the mono-
lithic resolution proof that we are constructing, we cannot
derive n or m).

The problem, then, is one of compositionality. Functional
identification relies of solving some related SAT problems
on the side, and the proofs obtained for the unsatisfiability
of those problems need to be integrated into the monolithic
proof for the miter.

Let C be a set of clauses in CNF form. Furthermore,
suppose that each of the CNFs C, C · (n), and C · (m) is
satisfiable, but C · (n) · (m) is not.

Consider the set of clauses C′ obtained from C by unit
propagation i.e. resolution w.r.t. the unit clauses (n) and
(m) i.e. C′ is obtained from C by

1. removing all clauses which contain n or m, and

2. removing literals n or m from clauses that contain
them

Note that clauses of C that do not contain variables n and
m are present unchanged in C′. Also, C′ does not contain
the variables n or m.

Clause Pre-image. Every clause c in C′ comes from a
unique clause in C called its pre-image, denoted by pre(c).

Lemma 1. If C · (n) · (m) is unsatisfiable, so is C′.

Proof. Suppose not. Then a satisfying assignment of C′

extended with n = 1 and m = 0 can be seen to be a satisfy-
ing assignment of C · (n) · (m). This is a contradiction.

Let R′ be a resolution proof of unsatisfiability of C′, i.e.
R′ is a sequence of resolution steps starting from the clauses
in C′ and deriving the empty clause ().

Proof Lifting. Since every clause in C′ has a unique
pre-image in C, and every variable in C′ is present in C, the
resolution steps in R′ can be performed on corresponding
pre-image clauses in C yielding a valid resolution derivation
R. R is called the lifting of R′. For each resolvent clause in
R′, there is a corresponding resolvent in R.

Theorem 1. Given C, C · (n), and C · (m) satisfiable, and
C ·(n) ·(m) not. Let C′ be derived from C by unit propagation
of n and m. Let R′ be the resolution proof of unsatisfiability
of C′. The lifting R of R′ derives the clause (n ∨m).

Proof. (Sketch.)

1. A resolution proof of unsatisfiability (i.e. a sequence of
resolution steps) can be viewed as a binary tree where
the leaves are the original clauses in the SAT problem,
the root is the empty clause and intermediate nodes
are resolvents.

2. Claim: In the resolution proof R′, there exist leaves c1

and c2 (possibly the same) such that n is a literal of
pre(c1) and m is a literal of pre(c2).

Proof. Suppose there is no such c1. This means no
leaf of R′ is a result of unit propagation due to n. Thus
R′ can serve as a proof of unsatisfiability of C · (m).
This is a contradiction since C · (m) is assumed to be
satisfiable. Similarly for c2.

3. Claim: The root of R must be a clause containing n
and m.

Proof. In R, there is no resolution w.r.t. the vari-
ables n or m, since every resolution in R corresponds
to a resolution in R′, and the leaves of R′ do not con-
tain the variables n or m. From Step 2, we know that
some leaves of R contain the literals n and m, and so
these literals must be present in the root.

4. Claim: The root of R cannot contain any literals other
than n and m.

Proof. By contradiction. Suppose the root of R
contains some other literal x. That means there ex-
ists a path from the root to a leaf clause containing x
along which there is no resolution w.r.t. to the vari-
able x. Look at the corresponding path in R′. Since
there is no resolution w.r.t. x along that path in R′,
the root clause of R′ must also contain x which is a
contradiction since the root clause of R′ is empty.

603

From 3 and 4, it is clear that the root clause of R contains
only n and m and hence must be (n ∨m).

Thus, by presenting the problem C′ (instead of C·(n)·(m))
to the SAT solver, we can lift the resolution proof generated
by the solver to derive the clause (n ∨ m). Similarly, the
clause (n ∨m) can also be derived.

We note that it may not even be necessary to explicitly
construct the problem C′. When the SAT solver is used in
incremental mode (as is commonly the case), the clauses
(n) and (m) are added in incremental mode as top-level
assignments, and the solver performs unit propagation im-
mediately. In this incremental setting, Zhang and Malik’s
method may be modified to directly produce the resolution
proof of (n ∨m).

Example. Consider the miter in Figure 1(b). Although,
structural identification would easily show that p and q are
equivalent, it also provides a simple example for functional
identification. The clauses 1-6 of Section 1.1 constitute the
set C. Consider the following set of clauses C′ obtained from
C by unit propagation of p and q:

id: clause pre-image
1′: (a) [1: (p ∨ a)]
2′: (b) [2: (p ∨ b)]

6′: (a ∨ b) [6: (q ∨ a ∨ b)]

The resolution proof of unsatisfiability of C′ is:
r1: (b) [from 1′ and 6′]
r2: () [from 2′ and r1]

Applying lifting (i.e. performing the same sequence of reso-
lutions on the pre-images of the clauses) gives the following
fragment:

l1: (p ∨ q ∨ b) [from 1 and 6]
l2: (p ∨ q) [from 2 and l1]

Thus the required clause (p ∨ q) is derived from the clauses
in the original resolution proof. Similarly by considering C
and unit propagation of p and q, we can derive (p ∨ q).

4.4 Fanout Transfer
When the fanouts of a net m are transfered to another net

n, every gate in the miter with m as an input is modified to
use n as input. To maintain the correspondence invariant,
new clauses have to be derived (using resolution) from the
current clauses to reflect the change in the miter. These
clauses are derived as follows. First, for this fanout transfer
to be sound, the following clauses must already have been
derived:

f1: (n ∨m) f2: (n ∨m)
(Clauses f1 and f2 assert the equivalence of nets m and n,
and they would have been derived as a result of structural
or functional identification.)

Second, each clause in the proof that has the literal m, is
resolved with f2 to get a corresponding clause with the literal
n. Similarly, each clause in the proof that has the literal m
is resolved with f1 to obtain a corresponding clause with the
literal n.

Example. We continue with the example of Figure 1, and
the clauses 1-10 as listed in Section 1.1. Suppose we have
derived the following clauses using structural or functional
identification.

f1: (p ∨ q) f2: (p ∨ q)
When we transfer the fanouts of q to p (only one fanout in
this case), we obtain the following resolvents:

Figure 2: (a) Miter where p and q are known to be
equivalent. (b) The miter obtained by transferring
the fanout of q to p.

t1: (p ∨ z) [from f2 and 7]
t2: (p ∨ p ∨ z) [from f1 and 8]
t3: (p ∨ p ∨ z) [from f2 and 9]
t4: (p ∨ z) [from f1 and 10]

Note that some redundant clauses may be obtained as a
result of this step.

4.5 Logic Insertion
In logic insertion, a new gate is added to the miter. In

practice, this is the simplest of the four operations, since
only clauses for the new gate are introduced in the resolution
proof. (No actual resolution steps are needed.)

However, conceptually, logic insertion requires upgrading
our proof system. We need to use extended resolution [16] in-
stead of resolution in order to accommodate the new clauses
that are introduced on account of the new gate.

In an extended resolution proof, in addition to clauses
derived using resolution, one can introduce new free vari-
ables. Thus given a set of clauses, say C over variables
x1, x2, .. xn, one can introduce a new clause of the type
(t ≡ f(x1, x2, .. xn)) where f is some function of x1, x2, ..
xn and t is a new variable. Soundness is easy to check: C
is satisfiable iff C · (t ≡ f(x1, x2, ..xn)) is. (Since t does not
occur in C, a satisfying assignment of C can be extended by
assigning to t the value of f(x1, x2, .. xn) under the assign-
ment. The other direction is trivial.)

We note that the actual clause introduced into the reso-
lution proof would not be of the form (t ≡ f(x1, x2, .. xn)),
since it is not in CNF. Instead a set of CNF clauses corre-
sponding to this clause would be inserted.

Example. Consider the introduction of a logic cone com-
prising a single and gate on inputs a and b. Let t be a
variable that doesn’t occur in the proof so far. Instead of
introducing the clause (t ≡ (a∧b)), one would introduce the
three CNF clauses (t ∨ a), (t ∨ b), and (t ∨ a ∨ b).

Thus the verifier is modified to accept a set of clauses of
the form:

e1: (t ∨ a) [clause 1 of t ≡ and(a, b)]
e2: (t ∨ b) [clause 2 of t ≡ and(a, b)]

e3: (t ∨ a ∨ b) [clause 3 of t ≡ and(a, b)]
The verifier checks that the variable t is a fresh variable

(i.e. is not mentioned previously in the proof), and that
the correct set of 3 clauses is introduced. For every type of
gate that can be introduced by logic insertion, one modifies

604

the verifier to accept the corresponding set of clauses. If
the CEC program uses an And-Inverter Graph, only and
gates can be introduced, and so the verifier needs only the
above modification. Note that this modification does not
significantly add to the complexity of the verifier.

Example. Consider the example of Figure 2(b). During
re-writing we may realize that we can replace the xor gate
with the constant zero gate. Thus a new gate (with no
inputs) whose output is 0 is introduced into the miter. Let
the output of the gate be u. The corresponding clause is (u)
is introduced using extended resolution.

To complete the example, functional identification (or even
structural identification with a suitable template) would gen-
erate a proof of the equivalence of z and u, and derive the
clauses (z ∨ u) and (z ∨ u). Next, fanout transfer would de-
rive the clause (u) from clauses (z) (clause 11 in Section 1.1)
and (z ∨ u). The empty clause would be derived from (u)
and (u) thus completing the proof.

5. RELATED WORK
To our knowledge, there is no prior work in the litera-

ture on generating proofs of equivalence in state-of-the-art
equivalence checkers that use structural hashing, intermedi-
ate functional equivalences, re-writing, etc.

There is, however, some interesting work on generating ex-
tended resolution proofs from BDDs [15, 6]. The techniques
described in those papers could be used in conjunction with
the ones described herein to provide an unified proof format
for “multi-engine” CEC programs that use both SAT solvers
and BDDs.

We note here that Sinz and Biere [15, Section 1] point out
that extended resolution so far has mainly been of theoreti-
cal interest, since extended resolution proofs are difficult to
find. However, like them, we find extended resolution to be
a convenient way of expressing proofs found through other
means (in our case through re-writing). Thus, the tech-
niques presented in this paper may be seen as another way
of generating (short) extended resolution proofs for propo-
sitional problems.

6. CONCLUSIONS
We have shown that it is possible to generate a single (ex-

tended) resolution proof for the unsatisfiability of the miter,
even though the CEC engine internally uses techniques such
as structural hashing, detection of intermediate functional
equivalences, and circuit re-writing. The advantage of gen-
erating a single resolution proof is that it is very easy to
check, and is independent of the methods used by the CEC
engine.

A key challenge in the practical implementation of these
ideas relates to the size of the resolution proofs that are
generated. Goldberg and Nobikov present a method to ob-
tain a more compact representation of the resolution proof
generated by a SAT solver at the expense of increasing the
verifier complexity [5]. It would be interesting to explore
similar tradeoffs between the size of the proof and the com-
plexity of the verifier in the context of the method presented
here.

Some of the techniques described in this paper may be
useful for a correct-by-construction logic synthesis flow in
which the synthesis tool directly generates a resolution proof
of equivalence of the original circuit and the synthesized

circuit. This would eliminate the need for an equivalence
checker. A more challenging project would be to extend
these ideas to the sequential synthesis and verification do-
mains since inductive proofs of sequential equivalence can be
expressed using resolution. Furthermore, resolution proofs
generated by this method could have other applications such
as generating interpolants for use in sequential equivalence
checking [11].

7. ACKNOWLEDGMENTS
We thank Kaushik Ravindran for his comments on an early

version of this paper. This work was partly supported by SRC
(contract #1361.001) and the California Micro Program with our
industrial sponsors Altera, Intel, Magma, and Synplicity.

8. REFERENCES
[1] P. Bjesse and A. Boralv, “DAG-aware circuit compression

for formal verification”, Proc. ICCAD 2004, pp. 42-49.
[2] D. Brand, “Verification of large synthesized designs,” in

Proc. ICCAD 1993, pp. 534-537.
[3] M. Davis and H. Putnam, “A computing procedure for

quantification theory,” Journal of the ACM, vol. 7, pp. 201-
215, 1960.

[4] M. Davis, G. Logemann, and D. Loveland, “A machine
program for theorem proving,” Comm. ACM, vol. 5, pp.
394-397, 1962.

[5] E. Goldberg and Y. Novikov, “Verification of Proofs of
Unsatisfiability for CNF Formulas,” In Proc. DATE 2003,
pp. 886-891.

[6] T. Jussila, C. Sinz, and A. Biere, “Extended resolution
proofs for symbolic SAT solving with quantification,” In
Proc. 9th Intl. Conf. on Theory and Applications of
Satisfiability Testing (SAT ‘06), Lecture Notes in Computer
Science (LNCS), vol. 4121, Springer 2006.

[7] A. Kuehlmann and F. Krohm, “Equivalence checking using
cuts and heaps,” Proc. DAC 1997, pp. 263-268.

[8] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai,
“Robust boolean reasoning for equivalence checking and
functional property verification,” IEEE Trans. CAD, Vol.
21(12), 2002, pp. 1377-1394.

[9] A. Kuehlmann, “Dynamic transition relation simplification
for bounded property checking,” Proc. ICCAD 2004, pp.
50-57.

[10] W. Kunz, “HANNIBAL: An efficient tool for logic
verification based on recursive learning,” in Proc. ICCAD
1993, pp. 538-543.

[11] K. McMillan, “Interpolation and SAT-based Model
Checking,” in Proc. CAV 2003, pp. 1-13.

[12] A. Mishchenko, S. Chatterjee, and R. Brayton,
“DAG-aware AIG rewriting: A fresh look at combinational
logic synthesis,” Proc. DAC 2006, pp. 532-536.

[13] A. Mishchenko, S. Chatterjee, R. Brayton and N. Eén,
“Improvements to combinational equivalence checking,”
Proc. ICCAD 2006, pp. 836-843.

[14] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S.
Malik, “Chaff: engineering an efficient SAT solver,” Proc.
DAC 2001, pp. 530-535.

[15] C. Sinz and A. Biere, “Extended resolution proofs for
conjoining BDDs,” In Proc. 1st Intl. Computer Science
Symp. in Russia (CSR 2006), St. Petersburg, Russia,
Lecture Notes in Computer Science (LNCS), vol. 3967,
Springer 2006.

[16] G. Tseitin, “On the complexity of derivation in
propositional calculus,” In Studies in Constructive
Mathematics and Mathematical Logic, 1970.

[17] L. Zhang and S. Malik, “Validating SAT solvers using an
independent resolution-based checker: practical
implementations and other applications,” Proc. DATE
2003, pp. 880-885.

605

